• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Differential geometry of holomorphic vector bundles with Rizza structures and it applications

Research Project

Project/Area Number 16K05135
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionKagoshima University

Principal Investigator

Aikou Tadashi  鹿児島大学, 理工学域理学系, 教授 (00192831)

Co-Investigator(Kenkyū-buntansha) 小櫃 邦夫  鹿児島大学, 理工学域理学系, 准教授 (00325763)
田中 恵理子  鹿児島大学, 理工学域理学系, 助教 (70376979)
Project Period (FY) 2016-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2017: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2016: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
KeywordsRizza構造 / 複素Finsler構造 / Rizza-negativity / Griffith-negativity / 正則ベクトル束 / Rizza-negative / 実Finsler計量の共形的平坦性 / 接続の片側射影変換 / 複素フィンスラー計量 / 共形的平坦性 / 豊富性 / 幾何学
Outline of Final Research Achievements

In this study, we mainly studied the negativity of holomorphic vector bundles over compact complex manifolds from the point of view of Finsler geometry. Given a Rizza structure in a holomorphic vector bundle, the notion of Rizza-negativity is naturally defined in terms of its curvature. On the other hand, there are two different types of negativity on holomorphic vector bundles, that is, the Griffith-negativity in the sense of Hermite geometry and the negativity in the sense of algebraic geometry. In this study, we have studied the relationship between these three negativities on holomorphic vector bundles. In particular, we have studied whether the Griffith-negativity leads the Rizza-negativity under the assumption that the given Rizza structure is a complex Berwald structure.

Academic Significance and Societal Importance of the Research Achievements

この研究課題では,Hermite構造を一般化した複素Finsler構造の類の計量構造であるRizza構造を微分幾何学の手法を用いて研究し,代数幾何学的な概念であるコンパクト複素多様体上の正則ベクトル則のnegativity(負性)または,その双対的な概念であるampleness(豊富性)を議論したものである。特にRizza-negativityの概念を導入し,代数幾何学の意味でのnegativityとHermite幾何学の意味でのnegativityとの関係を構築できた。得られた結果は新たな研究課題を生み出し,今後の研究の方向性を示唆する結果となった。

Report

(6 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (11 results)

All 2021 2019 2018 2017 2016

All Journal Article (1 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 1 results) Presentation (10 results) (of which Int'l Joint Research: 5 results,  Invited: 5 results)

  • [Journal Article] Super Finsler connection of superparticle on two-dimensional curved spacetime2019

    • Author(s)
      Ootsuka Takayoshi、Ishida Muneyuki、Tanaka Erico、Yahagi Ryoko
    • Journal Title

      International Journal of Geometric Methods in Modern Physics

      Volume: なし Issue: 04 Pages: 1950055-1950055

    • DOI

      10.1142/s0219887819500555

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Some remarks on complex Berwald structures2021

    • Author(s)
      Tadashi Aikou
    • Organizer
      The 55th Symposium on Finsler Geometry, Sapporo, Japan
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 擬等角変分の方法について2019

    • Author(s)
      小櫃 邦夫
    • Organizer
      Beltrami方程式勉強会 II(東京工業大学)
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Negative vector bundles and complex Finsler geometry2018

    • Author(s)
      Tadashi Aikou
    • Organizer
      23rd International Summer School on Global Analysis and Applications
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] One-sided projective changes of Finsler connections2018

    • Author(s)
      Tadashi Aikou
    • Organizer
      第53回フィンスラー幾何学シンポジウム(福岡工業大学
    • Related Report
      2018 Research-status Report
  • [Presentation] Some Remarks on Conformal Finsler metrics and Wagner-type connections2017

    • Author(s)
      Tadashi Aikou
    • Organizer
      DGDS-2017
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Some remarks on conformal structures in Finsler geometry2017

    • Author(s)
      Tadashi Aikou
    • Organizer
      15th International Conference of Tensor Society
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Conformal Finsler structures and connections2017

    • Author(s)
      Tadashi Aikou
    • Organizer
      第52回フィンスラー幾何学研究集会
    • Related Report
      2017 Research-status Report
  • [Presentation] Symplectic structures on the space of quadratic differentials2017

    • Author(s)
      小櫃 邦夫
    • Organizer
      モジュライ空間のシンプレクティック幾何
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] Geodesic Equations of Superparticle using Super Finsler Connection2017

    • Author(s)
      Erico Tanaka
    • Organizer
      Strings and Fields 2017
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] Some remake on locally conformal Berwald spaces2016

    • Author(s)
      Tadashi Aikou
    • Organizer
      第51回フィンスラー幾何学研究集会
    • Place of Presentation
      鹿児島県市町村自治会館(鹿児島県・鹿児島市)
    • Year and Date
      2016-11-18
    • Related Report
      2016 Research-status Report

URL: 

Published: 2016-04-21   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi