Gauge theory on noncommutative Kähler manifolds constructed by deformation quantization
Project/Area Number |
16K05138
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Geometry
|
Research Institution | Tokyo University of Science |
Principal Investigator |
Sako Akifumi 東京理科大学, 理学部第二部数学科, 教授 (00424200)
|
Co-Investigator(Kenkyū-buntansha) |
長谷部 一気 仙台高等専門学校, 総合工学科, 准教授 (60435469)
|
Project Period (FY) |
2016-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2016: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
|
Keywords | 非可換幾何 / ケーラー多様体 / 場の量子論 / ゲージ理論 / 行列模型 / 変形量子化 / 場の理論 / インスタントン / リッチ平坦 / アインシュタイン多様体 / Seiberg-Witten写像 / 微分幾何 / 位相的場の理論 / トポロジカル絶縁体 |
Outline of Final Research Achievements |
We have shown that deformation quantization on noncommutative Kahler manifolds corresponds to local Fock representations, and have succeeded in constructing a concrete construction method for the Fock representations and the dictionary for translation between the deformation quantizations and Fock representations. In the simplest noncommutative Kahler manifold, the noncommutative Euclidean space (dimensions 2, 4, and 6), the simplest model of field theory, the scalar field theory (Grosse Wulkenhaar model), is constructed as a system of Schinger-Dyson equations, and all n-point functions are exactly solved in the strong noncommutative limit. We also showed that instanton solutions appearing in gauge theories on the four-dimensional noncommutative Euclidean space correspond to Ricci flat measures on Hermitian manifolds.
|
Academic Significance and Societal Importance of the Research Achievements |
非可換ケーラー多様体上の場の量子論の研究が進展した.場の量子論は,現時点で全ての物理理論を記述する方法であり,その解明は人類全体の発展において最重要な問題である.場の量子論は発散の困難のため数学的に厳密に定義できない場合がほとんどであり,さらに場の量子論の目的であるn点関数は摂動計算で近似解が求められることが通常であり,厳密解が得られることはまれである.非可換空間上の場の理論をもとに行列模型を構築する事で,n点関数の方程式の組として場の量子論を構築する例を作り,ある極限では厳密にその方程式を解くことに成功した.他にも非可換ケーラー多様体の構成法やゲージ理論と計量の関係の解明に進展があった.
|
Report
(6 results)
Research Products
(45 results)