• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

The image by multilinear map to the real projective space and an application to the rank of tensors

Research Project

Project/Area Number 16K05151
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionKyushu University

Principal Investigator

Sumi Toshio  九州大学, 基幹教育院, 教授 (50258513)

Project Period (FY) 2016-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2016: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Keywordsテンソル / ランク / 多重線形写像 / 群作用 / 典型ランク / トポロジー / テンソルランク
Outline of Final Research Achievements

A 3-tensor is a 3-way array. The determination of the rank, a measure of complexity of computation, of a tensor is difficult (NP-hard). In this study, I tried to determine the ranks of certain tensors. I found a condition for tensors with size (m,n,p) such that the set of tensors with size (m,n,p) has p+1 as the minimal typical rank, which is the minimal number occurring as a rank with positive probability, to have p+1 as the rank. Further I study representative spaces, and in particular, the dimensions of the fixed point sets of a representative space by cyclic subgroups. I showed there exists a finite simple group which does not have the expectative property.

Academic Significance and Societal Importance of the Research Achievements

テンソルの階数1テンソルの和への分解は,行列においては,特異値分解に対応し,その拡張である.テンソルとは高次元配列のことである.テンソルの階数は,従来,計算の複雑度の尺度として用いられていたが,近年,テンソルの階数1テンソルの和への分解(の近似)が,シグナルプロセッシング,データマイニング,コンピュータビジョン,グラフ解析など様々な分野で応用が見られるようになった.実験データとして得られることが多い実数体上のテンソルの階数の研究はまだ非常に少ないため,それらの研究を行った.

Report

(4 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (4 results)

All 2018 2016

All Journal Article (2 results) (of which Peer Reviewed: 1 results,  Open Access: 2 results) Presentation (2 results) (of which Int'l Joint Research: 1 results)

  • [Journal Article] Classification of a family of ribbon 2-knots with trivial Alexander polynomial2018

    • Author(s)
      Taizo Kanenobu and Toshio Sumi
    • Journal Title

      Communications of the Korean Mathematical Society

      Volume: 33 Pages: 591-604

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] A sufficient condition for a finite group to be a Borsuk-Ulam group2018

    • Author(s)
      Toshio Sumi
    • Journal Title

      数理解析研究所講究録

      Volume: 2098 Pages: 148-161

    • Related Report
      2018 Annual Research Report
    • Open Access
  • [Presentation] Sufficient condition to be a Borsuk-Ulam group2018

    • Author(s)
      Toshio Sumi
    • Organizer
      Joint meeting of UMI,SIMAI, PTM
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] On the typical nonnegative ranks of tensors2016

    • Author(s)
      角 俊雄
    • Organizer
      数理統計ひこね2016
    • Place of Presentation
      滋賀大学
    • Year and Date
      2016-12-03
    • Related Report
      2016 Research-status Report

URL: 

Published: 2016-04-21   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi