• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Symmetries of spatial graphs by 3-manifold topology

Research Project

Project/Area Number 16K05163
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionKindai University

Principal Investigator

IKEDA Toru  近畿大学, 理工学部, 教授 (00325408)

Project Period (FY) 2016-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Fiscal Year 2018: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2017: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2016: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Keywords3次元多様体 / デーン手術 / 空間グラフ / 対称性 / 幾何学 / 低次元トポロジー / 結び目理論 / 3次元多様体論
Outline of Final Research Achievements

(1) We showed that a link in the 3-sphere is the fixed point set of a cyclic group action on a 3-manifold obtained by Dehn surgery, and gave a condition for a spatial graph in the 3-sphere to have a symmetry given by an involution with fixed point set being a closed surface.
(2) We proved that an orientation-reversing periodic diffeomorphism on a 3-manifold with a reduced fixed point set has a surgery description in either the 3-sphere, the circle-bundle over the 2-sphere, or the 3-torus.
(3) We gave a condition for an abstract graph with a symmetry given by a finite subgroup of the orthogonal group O(4) to admit a spatial embedding which is setwise invariant under the linear action on the three-dimensional sphere.

Academic Significance and Societal Importance of the Research Achievements

3次元多様体論の基盤となる重要な事実の一つとして,向き付け可能閉3次元多様体が3次元球面内の枠付き絡み目で記述されることが知られており,これに基づいて多くの理論が展開されている。本研究により枠付き絡み目に反映される3次元多様体の幾何学的性質を新たに示し,3次元多様体論の視界を広げることに貢献できた。また,先行研究に比べて汎用性の高いグラフ対称性の実現方法を提案したため,複雑な空間グラフや様々なグラフ対称性を扱うための研究の手段を提供することができた。

Report

(4 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (4 results)

All 2019 2018 2017 2016

All Journal Article (2 results) (of which Peer Reviewed: 2 results) Presentation (2 results) (of which Invited: 1 results)

  • [Journal Article] Involutions of hyperbolic spatial graph exteriors whose fixed point sets are closed surfaces2018

    • Author(s)
      Toru Ikeda
    • Journal Title

      Journal of Knot Theory and Its Ramifications

      Volume: 27 Issue: 01 Pages: 1850004-1850004

    • DOI

      10.1142/s0218216518500049

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] Hyperbolic rotations about links in 3-manifolds2017

    • Author(s)
      Toru Ikeda
    • Journal Title

      Journal of Geometry

      Volume: 108 Issue: 1 Pages: 111-118

    • DOI

      10.1007/s00022-016-0328-0

    • Related Report
      2016 Research-status Report
    • Peer Reviewed
  • [Presentation] 3次元多様体上の向き反転周期的微分同相のsurgery descriptions2019

    • Author(s)
      池田徹
    • Organizer
      日本数学会トポロジー分科会
    • Related Report
      2018 Annual Research Report
  • [Presentation] 補空間が双曲多様体となる空間グラフの構成について2016

    • Author(s)
      池田徹
    • Organizer
      ハンドル体結び目とその周辺IX
    • Place of Presentation
      近畿大学(東大阪市)
    • Year and Date
      2016-10-09
    • Related Report
      2016 Research-status Report
    • Invited

URL: 

Published: 2016-04-21   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi