Project/Area Number |
16K05163
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Geometry
|
Research Institution | Kindai University |
Principal Investigator |
IKEDA Toru 近畿大学, 理工学部, 教授 (00325408)
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Fiscal Year 2018: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2017: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2016: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
|
Keywords | 3次元多様体 / デーン手術 / 空間グラフ / 対称性 / 幾何学 / 低次元トポロジー / 結び目理論 / 3次元多様体論 |
Outline of Final Research Achievements |
(1) We showed that a link in the 3-sphere is the fixed point set of a cyclic group action on a 3-manifold obtained by Dehn surgery, and gave a condition for a spatial graph in the 3-sphere to have a symmetry given by an involution with fixed point set being a closed surface. (2) We proved that an orientation-reversing periodic diffeomorphism on a 3-manifold with a reduced fixed point set has a surgery description in either the 3-sphere, the circle-bundle over the 2-sphere, or the 3-torus. (3) We gave a condition for an abstract graph with a symmetry given by a finite subgroup of the orthogonal group O(4) to admit a spatial embedding which is setwise invariant under the linear action on the three-dimensional sphere.
|
Academic Significance and Societal Importance of the Research Achievements |
3次元多様体論の基盤となる重要な事実の一つとして,向き付け可能閉3次元多様体が3次元球面内の枠付き絡み目で記述されることが知られており,これに基づいて多くの理論が展開されている。本研究により枠付き絡み目に反映される3次元多様体の幾何学的性質を新たに示し,3次元多様体論の視界を広げることに貢献できた。また,先行研究に比べて汎用性の高いグラフ対称性の実現方法を提案したため,複雑な空間グラフや様々なグラフ対称性を扱うための研究の手段を提供することができた。
|