• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Metric studies on uniform distribution theory

Research Project

Project/Area Number 16K05204
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Basic analysis
Research InstitutionKobe University

Principal Investigator

Fukuyama Katusi  神戸大学, 理学研究科, 教授 (60218956)

Project Period (FY) 2016-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2018: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2017: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2016: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Keywords一様分布論 / 間隙級数論 / 確率論 / 差異量 / 重複対数の法則 / 一様分布 / 重複大数の法則
Outline of Final Research Achievements

For given sequence of real numbers, multiplying a real number and investigate the distribution of fractional part. This is the thema of uniform distribution theory.
For various sequences, the limit distribution is the uniform distribution for almost every multiplied real number, and we analyse the speed of convergence toward the uniform distribution by using the notion of discrepancies. We have already prove the law of the iterated logarithm for discrepancies for geometric progressions, and proved the formula which give the limsup constant when the ratio is large. In this project, we found several ratios for which the limsup constant is different from the value given by the formula. We also proved the existence of the sequence which realize the given speed of convergence of discrepancies.

Academic Significance and Societal Importance of the Research Achievements

解析的整数論の一分野として研究されてきた一様分布論に強力に確率論の手法を導入し、重複大数の法則を証明することにより、極めて初等的な等比数列について、今まで未知であった小数部分の分布の一様分布への漸近の速度について研究を進めている。公比が大きい場合にはすでに決定的な結果を得ており、この研究プロジェクトで小さい公比の場合に起こる様々なパターンの挙動例を見出すことに成功しており、新奇な実例を挙げたこととなっている。

Report

(5 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (8 results)

All 2020 2019 2018 2017 2016 Other

All Int'l Joint Research (1 results) Journal Article (5 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 5 results,  Open Access: 4 results,  Acknowledgement Compliant: 1 results) Presentation (2 results)

  • [Int'l Joint Research] グラーツ工科大学(オーストリア)

    • Related Report
      2016 Research-status Report
  • [Journal Article] Metric discrepancy results for geometric progressions perturbed by irrational rotations2020

    • Author(s)
      Fukuyama K.、Mori S.、Tanabe Y.
    • Journal Title

      Acta Mathematica Hungarica

      Volume: 161 Issue: 1 Pages: 48-65

    • DOI

      10.1007/s10474-019-01003-7

    • NAID

      120006888536

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] A metric discrepancy result for geometric progression with ratio 3/22020

    • Author(s)
      Katusi Fukuyama
    • Journal Title

      Advanced Studies in Pure Mathematics

      Volume: ー

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] The central limit theorem for Riesz-Raikov sums II2019

    • Author(s)
      Fukuyama Katusi
    • Journal Title

      Transactions of the American Mathematical Society

      Volume: 372 Issue: 2 Pages: 1193-1211

    • DOI

      10.1090/tran/7772

    • NAID

      120006653242

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Metric discrepancy results for geometric progressions with small ratios2018

    • Author(s)
      Fukuyama K.、Sakaguchi S.、Shimabe O.、Toyoda T.、Tscheckl M.
    • Journal Title

      Acta Mathematica Hungarica

      Volume: 印刷中 Issue: 2 Pages: 416-430

    • DOI

      10.1007/s10474-018-0805-z

    • NAID

      120006498203

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] A metric discrepancy result with given speed2017

    • Author(s)
      I. Berkes, K. Fukuyama & T. Nishimura
    • Journal Title

      Acta Mathematica Hungarica

      Volume: 151 Issue: 1 Pages: 199-216

    • DOI

      10.1007/s10474-016-0658-2

    • NAID

      120005980727

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research / Acknowledgement Compliant
  • [Presentation] Metric discrepancy results for geometric progressions with ratios 3/2, 4/3, 8/3, 10/3, 13/6 and 17/82017

    • Author(s)
      福山克司、阪口晋次、島部理、チュクルマルティーナ
    • Organizer
      日本数学会年会統計数学分科会
    • Place of Presentation
      首都大学東京
    • Related Report
      2016 Research-status Report
  • [Presentation] A metric discrepancy result with given speed2016

    • Author(s)
      I. Berkes、福山克司、西村拓也
    • Organizer
      日本数学会秋期総合分科会統計数学分科会
    • Place of Presentation
      関西大学
    • Related Report
      2016 Research-status Report

URL: 

Published: 2016-04-21   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi