• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

On blow-up solutions for system of nonlinear drift-diffusion equations with nonlocal interactions

Research Project

Project/Area Number 16K05219
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Mathematical analysis
Research InstitutionMuroran Institute of Technology

Principal Investigator

Kurokiba Masaki  室蘭工業大学, 大学院工学研究科, 教授 (60291837)

Project Period (FY) 2016-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2018: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2017: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2016: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Keywords退化型移流拡散方程式系 / 空間高次元 / 多成分移流拡散方程式系 / 有限時間爆発解 / スケール臨界関数空間 / 特異極限問題 / Lebesgue-Bochner 空間 / 熱方程式の最大正則性 / Keller-Segel 方程式系 / 移流拡散方程式系 / Nagaiモデル / 特異極限 / Lebesgue-Bochner空間 / scaling critical space / Serrinの許容指数 / 退化移流拡散方程式 / 高速拡散型 / Shannonの不等式 / 断熱指数 / エントロピー / 初期値問題 / 多成分 / 2次モーメント / 時間大域解 / 解析学 / 関数方程式論 / 自己組織化
Outline of Final Research Achievements

In this research, we deal with the initial value problem of the degenerate drift-diffusion system with the fast nonlinear diffusion. We have introduced a new weighted Lp space and applied Shannon's inequality to show the new blow-up condition of the solution. Shanonn's inequality depends on the heat capacity ratio, and is an extended version of the conventional inequality. In Second subject, we deal with the singular limit problem of the initial value problem of the Keller-Segel equation in the scale critical function space. It is shown that the strong solution in the scaling critical function space converges to the solution of the parabolic-elliptic drift-diffusion system when the relaxation time is infinite. To prove the singular limit problem, the generalized maximum regularity inequality for the heat equation is applied.

Academic Significance and Societal Importance of the Research Achievements

移流拡散方程式は,半導体,プラズマ粒子の移動現象,中性子星の誕生,生物モデルなどそのサイズスケールが異なりながらも粒子の拡散と凝集の機構で様々な現象共通の数理構造が記述する.移流拡散方程式系の数理構造を明らかにしていくことは普遍的な科学的真理を求めていくことである.また腫瘍モデルの移流拡散方程式系は多成分系でその解析は膨大な情報量を必要とするが,癌の研究に医学的に貢献するものになる.半導体の設計にも移流拡散方程式の研究は大変重要である.

Report

(5 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (11 results)

All 2020 2019 2018 2017 2016

All Journal Article (2 results) (of which Peer Reviewed: 2 results) Presentation (9 results) (of which Int'l Joint Research: 3 results,  Invited: 6 results)

  • [Journal Article] Singular limit problem for the Keller-Segel system and drift-diffusion system in scaling critical spaces2020

    • Author(s)
      Masaki Kurokibaa, Takayoshi Ogawa
    • Journal Title

      Journal of Evolution Equations

      Volume: 20 Issue: 2 Pages: 421-457

    • DOI

      10.1007/s00028-019-00527-3

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Finite time blow up for solutions to a degenerate drift-diffusion equation for a fast diffusion case2019

    • Author(s)
      Masaki Kurokiba, Takayoshi Ogawa
    • Journal Title

      Nonlinearity

      Volume: 32-6号 Issue: 6 Pages: 2073-2093

    • DOI

      10.1088/1361-6544/ab0069

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Presentation] Keller-Segel 方程式の移流拡散方程式への零緩和時間極限について2020

    • Author(s)
      黒木場正城
    • Organizer
      2020年度日本数学会年会,函数方程式論分科会,日本大学,東京.
    • Related Report
      2019 Annual Research Report
  • [Presentation] Singular limit problem for the Cauchy problem of the Keller-Segel equation in the critical function space2019

    • Author(s)
      黒木場正城
    • Organizer
      第689回応用解析研究会,早稲田大学理工学部,2019年05月18日,東京,日本
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] Keller-Segel 方程式の移流拡散方程式への緩和時間無限大極限について2019

    • Author(s)
      黒木場正城
    • Organizer
      第13 回実解析と函数解析による偏微分方程式論研究集会,東北大学,なし,2019年12月27日,八戸市,日本
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] 高速拡散型退化移流拡散方程式の解の爆発について2019

    • Author(s)
      黒木場正城
    • Organizer
      日本数学会2019年度年会関数方程式論分科会
    • Related Report
      2018 Research-status Report
  • [Presentation] Singular limit problem for the Keller-Segel system to a drift-diffusion system in critical spaces2018

    • Author(s)
      黒木場正城
    • Organizer
      Seminar on Qualitative Theory of Differential Equations,,Comenius University,スロバキア
    • Related Report
      2018 Research-status Report
  • [Presentation] Blowing up for a solution to system of the drift-diffusion equations in higher dimensions2017

    • Author(s)
      黒木場正城
    • Organizer
      非線形現象の数値シミュレーションと解析2017
    • Place of Presentation
      北海道大学大学院理学研究科,北海道札幌市
    • Year and Date
      2017-03-07
    • Related Report
      2016 Research-status Report
    • Invited
  • [Presentation] Blowing up for a solution to system of the drift-diffusion equations in higher dimensions2016

    • Author(s)
      黒木場正城
    • Organizer
      第637回応用解析研究会
    • Place of Presentation
      早稲田大学理工学部,東京都新宿区
    • Year and Date
      2016-12-03
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Blowing up for a solution to system of the drift-diffusion equations in higher dimensions2016

    • Author(s)
      Masaki Kurokiba
    • Organizer
      RIMS研究集会 「発展方程式論とその非線形解析への応用」
    • Place of Presentation
      京都大学数理解析研究所,京都府京都市
    • Year and Date
      2016-10-12
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Finite time blow up for a solution to system of the drift-diffusion equations2016

    • Author(s)
      Masaki Kurokiba
    • Organizer
      Analysis for Nonlinear problems in UCSB
    • Place of Presentation
      University of Calfornia, Santa Barbara
    • Year and Date
      2016-08-17
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited

URL: 

Published: 2016-04-21   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi