• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Applications of micro-local analysis and wavelet analysis to wave equations with variable coefficients

Research Project

Project/Area Number 16K05223
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Mathematical analysis
Research InstitutionUniversity of Tsukuba

Principal Investigator

Kinoshita Tamotsu  筑波大学, 数理物質系, 准教授 (90301077)

Co-Investigator(Kenkyū-buntansha) 梶谷 邦彦  筑波大学, 数理物質系(名誉教授), 名誉教授 (00026262)
石渡 聡  山形大学, 理学部, 准教授 (70375393)
久保 隆徹  お茶の水女子大学, 基幹研究院, 准教授 (90424811)
Project Period (FY) 2016-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2016: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywords関数方程式論 / ウェーブレット / 数値解析 / 解析学 / 応用数学
Outline of Final Research Achievements

In this research, we studied partial differential equations, wavelet and Radon transform. We considered exact formulas and well-posedness of the Cauchy problem for wave equations with variable coefficients. As for the wavelet analysis, we designed some two-dimensional Parseval frames and dual frames. By numerical simulations we found that smooth frames in the frequency space give better reconstruction. Moreover, we also proposed some transforms concerned with the Radon transform and showed their properties and applications.

Academic Significance and Societal Importance of the Research Achievements

変数係数を持つ波動タイプの偏微分方程式に対する初期値問題の解の表現公式が得られれば、物理現象の法則となる解の性質等が引き出せ、数値実験もそのままの形で実行ができるため、理論的にも応用的にも非常に意義があり、波動現象の解明へと繋がることが期待できる。また、本研究で得られた2次元のパーセヴァルフレームや双対フレームは2次元の画像解析への応用が可能で、数値解析的な処理速度や画像の精度の向上が期待できる。

Report

(6 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (26 results)

All 2020 2019 2018 2017 2016 Other

All Int'l Joint Research (8 results) Journal Article (8 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 8 results,  Open Access: 1 results,  Acknowledgement Compliant: 3 results) Presentation (10 results) (of which Int'l Joint Research: 2 results,  Invited: 1 results)

  • [Int'l Joint Research] University of Texas Rio Grande Valley(米国)

    • Related Report
      2020 Annual Research Report
  • [Int'l Joint Research] University of Bari(イタリア)

    • Related Report
      2020 Annual Research Report
  • [Int'l Joint Research] University of Texas Rio Grande Valley(米国)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] University of Bari(イタリア)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] University of Texas Rio Grande Valley(米国)

    • Related Report
      2018 Research-status Report
  • [Int'l Joint Research] University of Bari(イタリア)

    • Related Report
      2018 Research-status Report
  • [Int'l Joint Research] University of Texas Rio Grande Valley(米国)

    • Related Report
      2017 Research-status Report
  • [Int'l Joint Research] University of Texas Rio Grande Valley(米国)

    • Related Report
      2016 Research-status Report
  • [Journal Article] Haar and Shannon wavelet expansions with explicit coefficients of the Takagi function2020

    • Author(s)
      Naohiro Fukuda, Tamotu Kinoshita, Toshio Suzuki
    • Journal Title

      Indian Journal of Mathematics

      Volume: 62 Pages: 21-41

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] On the double windowed ridgelet transform and its inverse2019

    • Author(s)
      Fujii Katsuya、Kinoshita Tamotu
    • Journal Title

      Integral Transforms and Special Functions

      Volume: 31 Issue: 2 Pages: 118-132

    • DOI

      10.1080/10652469.2019.1675059

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] On an αth-order fractional Radon transform and a wave type of equation2018

    • Author(s)
      Fujii Katsuya、Kinoshita Tamotu、Suzuki Toshio
    • Journal Title

      Integral Transforms And Special Functions,

      Volume: 29 Issue: 5 Pages: 1-17

    • DOI

      10.1080/10652469.2018.1434777

    • NAID

      120006888296

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] Wavelet transforms on Gelfand-Shilov spaces and concrete examples2017

    • Author(s)
      Fukuda Naohiro、Kinoshita Tamotu、Yoshino Kazuhisa
    • Journal Title

      J. Inequal. Appl.

      Volume: 2017 Issue: 1 Pages: 119-119

    • DOI

      10.1186/s13660-017-1393-0

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] 4次のStrombergウェーブレット2017

    • Author(s)
      福田 尚広, 木下 保
    • Journal Title

      日本応用数理学会論文誌

      Volume: 27 Pages: 162-185

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] On the unconditional convergence of wavelet expansions for continuous functions2016

    • Author(s)
      N. Fukuda, T. Kinoshita, T. Suzuki
    • Journal Title

      International Journal of Wavelets, Multiresolution and Information Processing

      Volume: 14 Issue: 01 Pages: 1-18

    • DOI

      10.1142/s0219691316500077

    • NAID

      120007129600

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Journal Article] On Second Order Hyperbolic Equations with Coefficients Degenerating at Infinity and the Loss of Derivatives and Decays2016

    • Author(s)
      T. Kinoshita
    • Journal Title

      J. Differential Equations

      Volume: 26 Issue: 10 Pages: 5441-5423

    • DOI

      10.1016/j.jde.2016.08.019

    • NAID

      120007129306

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Journal Article] Representation of solutions for 2nd order one-dimensional model hyperbolic equations2016

    • Author(s)
      A. Galstian and T. Kinoshita
    • Journal Title

      ournal D'Analyse Mathematique

      Volume: 130 Issue: 1 Pages: 355-374

    • DOI

      10.1007/s11854-016-0040-x

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Int'l Joint Research / Acknowledgement Compliant
  • [Presentation] Hardy 空間上のウェーブレットについて2020

    • Author(s)
      木下保
    • Organizer
      時間周波数フレームと画像処理への応用
    • Related Report
      2020 Annual Research Report
  • [Presentation] On Directional Frames Having Lipschitz Continuous Fourier Transforms2019

    • Author(s)
      木下保
    • Organizer
      つくば偏微分方程式研究集会
    • Related Report
      2019 Research-status Report
  • [Presentation] On Directional Frames Having Lipschitz Continuous Fourier Transforms2019

    • Author(s)
      木下保
    • Organizer
      多次元Stockwell変換と時間周波数解析,
    • Related Report
      2019 Research-status Report
  • [Presentation] On Parseval Frames for Multidirectional Expansions and a Semi-discretization Scheme of the Inversion of the Radon Transform2019

    • Author(s)
      木下保
    • Organizer
      日本応用数理学会
    • Related Report
      2018 Research-status Report
  • [Presentation] On Parseval Frames for Multidirectional Expansions and a Semi-discretization Scheme of the Inversion of the Radon Transform2019

    • Author(s)
      木下保
    • Organizer
      トモグラフィーと逆問題
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] On Parseval Frames for Multidirectional Expansions and a Semi-discretization Scheme of the Inversion of the Radon Transform2018

    • Author(s)
      木下保
    • Organizer
      名古屋偏微分方程式研究集会
    • Related Report
      2018 Research-status Report
  • [Presentation] Curvelets and Parseval frames for multidirectional expansions2017

    • Author(s)
      木下保
    • Organizer
      日本応用数理学会
    • Related Report
      2017 Research-status Report
  • [Presentation] On an αth Order Fractional Radon Transform and a Wave Type of Equation2017

    • Author(s)
      木下保
    • Organizer
      函館野偏微分方程式研究集会
    • Related Report
      2017 Research-status Report
  • [Presentation] Wavelet transforms on Gelfand-Shilov spaces2016

    • Author(s)
      木下保
    • Organizer
      ウェーブレット解析の研究集会
    • Place of Presentation
      京都大学数理解析研究所(京都府京都市)
    • Year and Date
      2016-10-24
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] GelFand-Shilov空間におけるウェーブレット変換について2016

    • Author(s)
      木下保
    • Organizer
      彦根偏微分方程式研究集会
    • Place of Presentation
      大学サテライト・プラザ彦根(滋賀県彦根市)
    • Year and Date
      2016-10-08
    • Related Report
      2016 Research-status Report

URL: 

Published: 2016-04-21   Modified: 2022-02-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi