• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Global solution structure in a system of two competing species with nonlinear diffusion effect

Research Project

Project/Area Number 16K05233
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Mathematical analysis
Research InstitutionEhime University

Principal Investigator

Kan-on Yukio  愛媛大学, 教育学部, 教授 (00177776)

Co-Investigator(Kenkyū-buntansha) 桑村 雅隆  神戸大学, 人間発達環境学研究科, 教授 (30270333)
Project Period (FY) 2016-04-01 – 2020-03-31
Project Status Discontinued (Fiscal Year 2019)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2016: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywords2種競争系 / 極限系 / 解構造 / 縮約系 / 球対称解 / 応用数学 / 関数方程式論
Outline of Final Research Achievements

In 1979, Shigesada, Kawasaki and Teramoto proposed a reaction-diffusion system (SKT) with nonlinear diffusion effect, in order to study the coexistence and segregation in a two competing species community. Although the system (SKT) is comparatively simple, open problems on the existence and nonexistence, the spatial profile, and the stability and so on have been still remained for the solution of the system (SKT). In this research, we studied a continuous deformation with respect to the cross-diffusion rate and the inter-specific competition rate, from the classical competition-diffusion system to the system (SKT). We derived some limiting systems from the system (SKT) when the cross-diffusion rate or the inter-specific competition rate is very large, and investigated the solution structure for their limiting systems.

Academic Significance and Societal Importance of the Research Achievements

本研究で得られた知見は,系(SKT)において交差拡散係数や種間競争係数があまり大きくない場合についての研究を進める際の重要な手がかりになると期待している.また,研究の過程で得られた極限系には周期解が存在することが数値的に確認されているため,この縮約系の解析により,系(SKT)の複雑な解構造の一部が解明できると思われる.さらに,交叉拡散効果の影響を大きくしていくと,系(SKT)は2種競争系の枠組みから外れ,一般の反応拡散系へと変化していくことを考えると,一般の反応拡散系へ研究を進める際の重要な手がかりになるものと期待している.

Report

(4 results)
  • 2019 Final Research Report ( PDF )
  • 2018 Annual Research Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (10 results)

All 2018 2017 2016

All Journal Article (3 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 3 results,  Open Access: 1 results,  Acknowledgement Compliant: 1 results) Presentation (7 results) (of which Int'l Joint Research: 3 results,  Invited: 4 results)

  • [Journal Article] Dynamics of Localized Unimodal Patterns in Reaction-Diffusion Systems for Cell Polarization by Extracellular Signaling2018

    • Author(s)
      Kuwamura Masataka、Seirin-Lee Sungrim、Ei Shin-ichiro
    • Journal Title

      SIAM Journal on Applied Mathematics

      Volume: 78 Issue: 6 Pages: 3238-3257

    • DOI

      10.1137/18m1163749

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Structure on the radially symmetric entire positive stationary solution for a competition-diffusion system2017

    • Author(s)
      Yukio Kan-on
    • Journal Title

      Far East J. Appl. Math.

      Volume: 97 Issue: 6 Pages: 241274-241274

    • DOI

      10.17654/am097060241

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] Diffusion-driven destabilization of spatially homogeneous limit cycles in reaction-diffusion systems2017

    • Author(s)
      Masataka Kuwamura, Hirofumi Izuhara
    • Journal Title

      Chaos: An Interdisciplinary Journal of Nonlinear Science

      Volume: 27 Issue: 3 Pages: 033112-033112

    • DOI

      10.1063/1.4978924

    • NAID

      120006318793

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Presentation] On limit systems and their solution structure for the Shigesada-Kawasaki-Teramoto model with large cross-diffusion rate2018

    • Author(s)
      Yukio Kan-on
    • Organizer
      The 12th AIMS Conference on Dynamical Systems, Differential Equations and Applications
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 重定・川崎・寺本モデルから導出される極限系について2018

    • Author(s)
      観音幸雄
    • Organizer
      南大阪応用数学セミナー
    • Related Report
      2018 Annual Research Report
    • Invited
  • [Presentation] Dynamics of localized patterns in reaction-diffusion systems for cell polarization by extracellular signaling2018

    • Author(s)
      Masataka Kuwamura
    • Organizer
      The 43rd Sapporo Symposium on Partial Differential Equations
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 重定・川崎・寺本モデルから導出される極限系とその解構造について2018

    • Author(s)
      観音幸雄
    • Organizer
      松山解析セミナー 2018
    • Related Report
      2017 Research-status Report
  • [Presentation] 重定・川崎・寺本モデルの正値定常解の解構造について2017

    • Author(s)
      観音幸雄
    • Organizer
      反応拡散方程式と非線形分散型方程式の解の挙動
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] 保存量をもつ反応拡散方程式におけるパルス状局在解の挙動について2017

    • Author(s)
      桑村雅隆,李聖林,栄伸一郎
    • Organizer
      応用数学合同研究集会
    • Related Report
      2017 Research-status Report
  • [Presentation] Diffusion driven destabilization of a spatially homogeneous limit cycle in reactiondiffusion systems2016

    • Author(s)
      Masataka Kuwamura
    • Organizer
      JSMB2016
    • Place of Presentation
      九州大学(福岡県福岡市)
    • Year and Date
      2016-09-08
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2016-04-21   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi