• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

圧縮性流体の基礎方程式系に対する構造解析と非線形安定性

Research Project

Project/Area Number 16K05237
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Mathematical analysis
Research InstitutionKumamoto University

Principal Investigator

中村 徹  熊本大学, 大学院先端科学研究部(工), 准教授 (90432898)

Project Period (FY) 2016-04-01 – 2019-03-31
Project Status Discontinued (Fiscal Year 2018)
Budget Amount *help
¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2016: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywords非線形偏微分方程式論 / 粘性保存則 / エネルギー法 / 時間漸近挙動 / 圧縮性粘性流体 / 粘性衝撃波 / 境界層解 / 漸近解析 / 解析学 / 偏微分方程式論 / 圧縮性流体 / 非線形安定性
Outline of Annual Research Achievements

本研究課題最終年度に当たる平成30年度は, これまでの研究に引き続き圧縮性粘性流体のモデル方程式系を包括するような一般的な対称双曲・放物型偏微分方程式系を1次元半空間上で考察し, 境界層解と呼ばれる定常解の漸近安定性及び非定常解の定常解への時間漸近率に関する研究に取り組んだ. 過去の研究においては, 単独の粘性保存則に現れる縮退定常解への時間漸近率が考察されており, 研究代表者らの研究 ('09) や川島・倉田 ('09) の研究により, 代数的時間漸近率の臨界指数について解析された. 特に川島・倉田 ('09) の結果において臨界指数は5であることが数学的に証明された. すなわち, 代数的重み付きL2空間において重み指数が5より小さいならば, 縮退定常解は漸近安定となり代数的時間漸近率が求められた. 一方で重み指数が5より大きくなると, 方程式の消散構造が変化することが示された. このような結果を踏まえて, 本研究では関連する連立粘性保存則系に対して縮退定常解への時間漸近率を重み指数が5より小さい場合について導出した. 単独の場合の過去の結果を鑑みると本結果は最適であると推察される. 証明の鍵は移流項の対称行列Aと粘性行列である正定値対称行列Bに対して, 行列BとAの積行列の固有値の符号の評価導出と, 行列A及びBで定まる2次形式の同時標準化にある. このような工夫を経て方程式系を対角化することにより, 固有値0に対応する方程式に単独方程式の解析の際に考案されたHardy型不等式の適用が可能となり, 臨界指数での時間漸近率の導出が可能となった.

Report

(3 results)
  • 2018 Annual Research Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (12 results)

All 2018 2017 2016

All Journal Article (5 results) (of which Peer Reviewed: 5 results,  Open Access: 1 results) Presentation (7 results) (of which Int'l Joint Research: 6 results,  Invited: 5 results)

  • [Journal Article] Viscous shock profile and singular limit for hyperbolic systems with Cattaneo's law2018

    • Author(s)
      T. Nakamura and S. Kawashima
    • Journal Title

      Kinetic and Related Models

      Volume: 11 Issue: 4 Pages: 795-819

    • DOI

      10.3934/krm.2018032

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Convergence rate of solutions towards the stationary solutions to symmetric hyperbolic-parabolic systems in half space2018

    • Author(s)
      T.Nakamura, S.Nishibata, N.Usami
    • Journal Title

      Kinetic & Related Models

      Volume: 11 Issue: 4 Pages: 757-793

    • DOI

      10.3934/krm.2018031

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Asymptotic stability of degenerate stationary solution to a system of viscous conservation laws in half line2018

    • Author(s)
      T.Nakamura
    • Journal Title

      AIMS Mathematics

      Volume: 3 Issue: 1 Pages: 35-43

    • DOI

      10.3934/math.2018.1.35

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Existence and asymptotic stability of stationary waves for symmetric hyperbolic-parabolic systems in half line2017

    • Author(s)
      T.Nakamura and S.Nishibata
    • Journal Title

      Math. Models and Meth. in Appl. Sci.

      Volume: 27 Issue: 11 Pages: 2071-2110

    • DOI

      10.1142/s0218202517500397

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] Boundary layer solution to system of viscous conservation laws in half line2016

    • Author(s)
      T.Nakamura and S.Nishibata
    • Journal Title

      Bull. Braz. Math. Soc., New Series

      Volume: 47 Issue: 2 Pages: 619-630

    • DOI

      10.1007/s00574-016-0173-7

    • Related Report
      2016 Research-status Report
    • Peer Reviewed
  • [Presentation] Viscous shock wave and singular limit for hyperbolic systems with Cattaneo's law2018

    • Author(s)
      T.Nakamura
    • Organizer
      XVII International Conference on Hyperbolic Problems
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Viscous shock wave and singular limit for hyperbolic systems with Cattaneo's law2018

    • Author(s)
      T.Nakamura
    • Organizer
      Mathematical Theory of Turbulence via Harmonic Analysisand Computational Fluid Dynamics
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Viscous shock wave and singular limit for hyperbolic systems with Cattaneo's law2018

    • Author(s)
      T.Nakamura
    • Organizer
      Recent development of mathematical fluid dynamics and hyperbolic conservation laws
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Viscous shock wave and singular limit for scalar conservation laws with Cattaneo's law2017

    • Author(s)
      T.Nakamura
    • Organizer
      German-Japanese Workshop on PDEs
    • Place of Presentation
      University of Konstanz (ドイツ)
    • Year and Date
      2017-03-15
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Asymptotic stability of stationary waves for symmetric hyperbolic-parabolic systems in half line2017

    • Author(s)
      中村徹
    • Organizer
      第34回九州における偏微分方程式研究集会
    • Place of Presentation
      九州大学
    • Year and Date
      2017-01-30
    • Related Report
      2016 Research-status Report
    • Invited
  • [Presentation] Viscous shock wave and singular limit for some hyperbolic system with relaxation2017

    • Author(s)
      T.Nakamura
    • Organizer
      Workshop on Hyperbolic and Parabolic Systems
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Degenerate boundary layer solution to a system of viscous conservation laws2016

    • Author(s)
      T.Nakamura
    • Organizer
      The 11th AIMS Conference
    • Place of Presentation
      Orlando (アメリカ合衆国)
    • Year and Date
      2016-07-01
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2016-04-21   Modified: 2019-12-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi