Analysis of multi-scale mathematical models with inter-hierarchical feedback effects and their applications for disease
Project/Area Number |
16K05265
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Foundations of mathematics/Applied mathematics
|
Research Institution | Hokkaido University (2018) The University of Tokyo (2016-2017) |
Principal Investigator |
Nakaoka Shinji 北海道大学, 先端生命科学研究院, 特任講師 (30512040)
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2018: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2017: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2016: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
|
Keywords | 数理モデル / 応用数学 / 生命医科学 / モデル化 / 数理工学 / 数学基礎論 / 免疫学 / 再生医学 |
Outline of Final Research Achievements |
Some common diseases such as cancer and dermatitis occur as a result of the progression of essential protein (molecule) and cell abnormalities. In some disorders, progress may be mediated by hierarchical feedback between molecules (fast dynamics) and tissues (slow dynamics).
In this study, we investigate multi-scale dynamics of disease progression by mathematical models with hierarchical feedback. One of the expected outcomes of this study is to contribute to understanding dynamical processes of disease progression by using mathematical modeling, analyses, and numerical simulations.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究により、分子 (速いダイナミクス) と細胞・組織 (遅いダイナミクス) レベルで見られるタイムスケールの違いを考慮した生命現象を取り扱う上で役立つ数理モデルを開発することができた。
開発した数理モデルをもとに、実データを解析して得られた結果を生物学・医学に基づいて解釈することで、様々な疾患に対する理解が得られるとともに、将来的に疾患を制御する上で重要な示唆を得ることができた。
|
Report
(4 results)
Research Products
(27 results)