• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

A mathematical study on structured ecological models that can be approximated by ODEs

Research Project

Project/Area Number 16K05279
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Foundations of mathematics/Applied mathematics
Research InstitutionUniversity of Miyazaki

Principal Investigator

Kon Ryusuke  宮崎大学, 工学部, 教授 (10345811)

Project Period (FY) 2016-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2016: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywordsレスリー行列モデル / 常微分方程式 / ロトカ・ヴォルテラ方程式 / 連続化 / 分岐 / 周期解 / 個体群振動 / 周期昆虫 / 1回繁殖型 / 多回繁殖型 / 大域漸近安定性 / 競争モデル / 年齢構造 / 差分方程式 / 1回繁殖型レスリー行列モデル / 構造化生態系モデル / 大域漸近安定生 / コルモゴロフ方程式 / 巡回対称性 / 同期軌道 / Leslie行列 / Lotka-Volterra方程式 / パーマネンス / Hopf分岐 / Leslie行列モデル / 数理生物学 / レスリー行列
Outline of Final Research Achievements

I studied a mathematical model describing population dynamics of periodical insects. The model is described by a system of nonlinear difference equations called a semelparous Leslie matrix model. Since it is difficult to examine the behavior of systems of difference equations, I revealed the behavior of a semelparous Leslie matrix model by reducing it to a system of ordinary differential equations, whose behavior is easier to understand than that of systems of difference equations, By using this reduction, I showed that the existence and stability condition of cycles in semelparous Leslie matrix models are equivalent to those of a certain Lotka-Volterra differential equation. By this result, I expressed the condition for periodical emergence observed in periodical insects in terms of parameters.

Academic Significance and Societal Importance of the Research Achievements

周期昆虫は周期的に一斉に羽化するという特徴をもっている.このような特徴がなぜ進化し維持されているのかを明らかにすることによって,他の様々な生物の理解が深まることが期待される.周期昆虫のこのような特徴を理解するためには,数理モデルによる理解が欠かせない.しかしながら,周期昆虫のように繁殖が1年のある時期に集中している場合には,数理モデルは差分方程式となり,その数学的な取り扱いは難しい.本研究では,このような数理モデルを扱うための方法を与えた.この研究成果により,自然現象を記述するさまざまな数理モデルの解析がさらに進むことが期待される.

Report

(6 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (28 results)

All 2020 2019 2018 2017 2016 Other

All Int'l Joint Research (3 results) Journal Article (7 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 4 results,  Open Access: 3 results) Presentation (18 results) (of which Int'l Joint Research: 6 results,  Invited: 4 results)

  • [Int'l Joint Research] Academia Sinica, Taiwan(その他の国・地域)

    • Related Report
      2020 Annual Research Report
  • [Int'l Joint Research] 台湾中央研究院(その他の国・地域)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] 中央研究院(その他の国・地域:台湾)

    • Related Report
      2018 Research-status Report
  • [Journal Article] Global dynamics of a special class of nonlinear semelparous Leslie matrix models2020

    • Author(s)
      Chow Yunshyong、Kon Ryusuke
    • Journal Title

      Journal of Difference Equations and Applications

      Volume: 26 Issue: 5 Pages: 625-642

    • DOI

      10.1080/10236198.2020.1777288

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Bifurcations of cycles in nonlinear semelparous Leslie matrix models2020

    • Author(s)
      Ryusuke Kon
    • Journal Title

      Journal of Mathematical Biology

      Volume: 80 (4) Issue: 4 Pages: 1187-1207

    • DOI

      10.1007/s00285-019-01459-9

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] 高次元の1回繁殖型Leslie行列モデルにおける2分律2018

    • Author(s)
      今隆助
    • Journal Title

      数理解析研究所講究録

      Volume: - Pages: 141-146

    • Related Report
      2018 Research-status Report
    • Open Access
  • [Journal Article] 私とロトカ・ヴォルテラ方程式2018

    • Author(s)
      今隆助
    • Journal Title

      日本数理生物学会ニュースレター

      Volume: - Pages: 2-9

    • Related Report
      2018 Research-status Report
  • [Journal Article] Non-synchronous oscillations in four-dimensional nonlinear semelparous Leslie matrix models2017

    • Author(s)
      Ryusuke Kon
    • Journal Title

      Journal of Difference Equations and Applications

      Volume: 10 Pages: 1-13

    • DOI

      10.1080/10236198.2017.1365144

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] Stable bifurcations in multi-species semelparous population models2017

    • Author(s)
      Ryusuke Kon
    • Journal Title

      Advances in Difference Equations and Discrete Dynamical Systems

      Volume: 212 Pages: 3-26

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] 宿主・捕食寄生者モデルの超離散化と非有界性2016

    • Author(s)
      今隆助
    • Journal Title

      数理解析研究所講究録

      Volume: 1997 Pages: 114-120

    • Related Report
      2016 Research-status Report
    • Open Access
  • [Presentation] 周期昆虫における固定された寿命の進化2020

    • Author(s)
      今 隆助
    • Organizer
      第30日本数理生物学会大会
    • Related Report
      2020 Annual Research Report
  • [Presentation] 1回繁殖型Leslie行列モデルにおける分岐の問題2020

    • Author(s)
      今 隆助
    • Organizer
      第185回愛媛大学解析セミナー
    • Related Report
      2019 Research-status Report
  • [Presentation] 1回繁殖型レスリー行列モデルの大域挙動2019

    • Author(s)
      今 隆助
    • Organizer
      第29回日本数理生物学会大会
    • Related Report
      2019 Research-status Report
  • [Presentation] Evolution of life cycle constancy in periodical insects2019

    • Author(s)
      今 隆助
    • Organizer
      研究集会「現象数理学の形成と発展」
    • Related Report
      2019 Research-status Report
  • [Presentation] ロトカ・ヴォルテラ方程式を用いた周期ゼミの研究2019

    • Author(s)
      今 隆助
    • Organizer
      数理工学センター第29回MCMEセミナー
    • Related Report
      2019 Research-status Report
  • [Presentation] Evolution of life cycle constancy in periodical insects2018

    • Author(s)
      Ryusuke Kon
    • Organizer
      International Conference on Mathematical Modeling and Computations (ICMMC-2018)
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Sustained oscillations in three-dimensional nonlinear iteroparous Leslie matrix models2018

    • Author(s)
      Ryusuke Kon
    • Organizer
      The 12th AIMS Conference on Dynamical Systems, Differential Equations and Applications
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] An invariant loop in four-dimensional nonlinear semelparous Leslie matrix models2018

    • Author(s)
      Ryusuke Kon
    • Organizer
      The 12th AIMS Conference on Dynamical Systems, Differential Equations and Applications
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] 1回繁殖型戦略における周期性と生活環恒常性の進化2018

    • Author(s)
      今 隆助
    • Organizer
      日本応用数理学会2018年度年会
    • Related Report
      2018 Research-status Report
  • [Presentation] 1回繁殖型戦略における周期性と生活環恒常性の進化2018

    • Author(s)
      今 隆助
    • Organizer
      日本人口学会第70回大会
    • Related Report
      2018 Research-status Report
  • [Presentation] Permanence of Lotka-Volterra equations with cyclic symmetry2017

    • Author(s)
      Ryusuke Kon
    • Organizer
      6th China India Japan Korea Mathematical Biology Colloquium
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] A dynamic dichotomy for semelparous Leslie matrix models2017

    • Author(s)
      Ryusuke Kon
    • Organizer
      6th China India Japan Korea Mathematical Biology Colloquium
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] 高次元の1回繁殖型Leslie行列モデルにおける2分律2017

    • Author(s)
      今 隆助
    • Organizer
      「特別計画」RIMS共同研究(公開型):第14回「生物数学の理論とその応用」
    • Related Report
      2017 Research-status Report
  • [Presentation] Lotka-Volterra 方程式のパーマネンス2017

    • Author(s)
      今 隆助
    • Organizer
      日本バイオインフォマティクス学会九州地域部会
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] 巡回対称性をもつLotka-Volterra 方程式のパーマネンス2017

    • Author(s)
      今 隆助
    • Organizer
      第27回日本数理生物学会年会
    • Related Report
      2017 Research-status Report
  • [Presentation] 巡回対称性をもつLotka-Volterra 方程式のパーマネンス2017

    • Author(s)
      今 隆助
    • Organizer
      日本応用数理学会2017年度年会
    • Related Report
      2017 Research-status Report
  • [Presentation] 1回繁殖型Leslie行列モデルにおける2分律2016

    • Author(s)
      今 隆助
    • Organizer
      RIMS研究集会「生物数学の理論とその応用」
    • Place of Presentation
      京都大学数理解析研究所420号室
    • Year and Date
      2016-11-14
    • Related Report
      2016 Research-status Report
  • [Presentation] Bifurcations in Leslie matrix models2016

    • Author(s)
      Ryusuke Kon
    • Organizer
      The 22nd International Conference on Difference Equations and Applications
    • Place of Presentation
      Osaka
    • Year and Date
      2016-07-24
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited

URL: 

Published: 2016-04-21   Modified: 2022-08-18  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi