Project/Area Number |
16K05442
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Condensed matter physics II
|
Research Institution | Nara Women's University (2017-2020) Nagoya University (2016) |
Principal Investigator |
|
Project Period (FY) |
2016-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2019: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2016: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | 汎関数くりこみ群 / 強相関電子系 / バーテックス補正効果 / 銅酸化物高温超伝導体 / エキシトニック絶縁体 / ダイマーモット絶縁体 / 電荷密度波 / くりこみ群法 / 電荷秩序 / 汎関数くりこみ群法 / 1粒子スペクトル関数 / エキシトニック絶縁相 / 超伝導 / 電子ネマティック状態 / 中性・イオン性転移 / 分子性導体 / くりこみ群 / 高温超伝導 / 物性理論 |
Outline of Final Research Achievements |
In the strongly correlated electron systems, the vertex corrections, the high-order many-body correlation effects, combine the spin, charge, and orbital degrees of freedom. As a result, it induces various interesting electronic properties. In recent years, many nontrivial phenomena, which cannot be explained by standard theoretical approaches, had been observed experimentally, and the development of a new theoretical approach focusing on vertex corrections was highly desired. In the present research project, we developed and extended the functional renormalization group method, by which the vertex corrections can be treated in an unbiased way. We utilized this method to analyze the electronic nematic state in cuprates, the pseudo-gapped state in transition metal chalcogenides, etc. We unveiled new mechanisms of the coupling between the spin, charge, and orbital degree of freedom through the vertex corrections.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究課題では、「バーテックス補正効果」を系統的に考慮することのできる新しい理論手法である「汎関数くりこみ群法」を発展させ、種々の未解明問題に「汎関数くりこみ群法」を適用した。これにより、「バーテックス補正」を通して、スピン・電荷・軌道自由度がどのように結合するのかを明らかすることに成功した。これまで難問とされてきた強相関電子系に対し、信頼性のある解析が可能な新たな理論手法のひとつとして「汎関数くりこみ群法」を確立することができた点で非常に有益である。
|