Project/Area Number |
16K05460
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Condensed matter physics II
|
Research Institution | Kyushu Sangyo University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
加藤 勝 大阪府立大学, 工学(系)研究科(研究院), 准教授 (90204495)
|
Research Collaborator |
NOJIMA tsutomu
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2018: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2016: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
|
Keywords | 超伝導 / 低温物性 / ナノ構造 / 金属物性 / バルクナノメタル / 巨大ひずみ加工 / 物性実験 / 超伝導材料 / ナノ材料 / 量子閉じ込め / 走査プローブ顕微鏡 |
Outline of Final Research Achievements |
We prepared bulk nanostructured superconductors, which shows aperiodic nanostructures, by high pressure torsion (HPT) processing and measured critical temperature Tc. Tc increases after HPT in Nb, but decreases in V and Ta. The different property can be explained by the difference in the intensity and distribution of the disorder in nanostructures. It is also shown that by HPT processing, type I superconductor Ta is converted to type II superconductor, and that NbTi alloy can be prepared from mixed powder of Nb and Ti. Using the microscopic theory of superconductivity, we found that the critical temperature Tc increases with decreasing the size of nanostructured superconductors. For dirty nanostructured superconductors, Tc decreases for some distribution of impurities and increases for other distribution of impurities with increasing the impurity potential.
|
Academic Significance and Societal Importance of the Research Achievements |
近年,高圧ねじり法などの巨大ひずみ加工によりナノスケールの微細結晶粒を持つバルクナノメタルを作製できる技術が開発されてきた.本研究では,この手法を超伝導体へ適用することで,これまで困難であった非周期ナノ構造体の超伝導特性の研究を推進した点で学術的な意義を持つ.また,巨大ひずみ加工によって超伝導特性の向上や制御の可能性について知見が得られたことは,今後の超伝導応用などを考えるとその社会的な意義は大きい.
|