Nonequilibrium dynamics and statistical properties of fracture phenomena
Project/Area Number |
16K05473
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Mathematical physics/Fundamental condensed matter physics
|
Research Institution | Osaka University |
Principal Investigator |
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2016: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
|
Keywords | 破壊現象 / 非平衡統計物理学 / 確率モデル / 臨界現象 / 乾燥破壊 / 統計的性質 / ファイバーバンドルモデル / 乾燥破壊の確率モデル / パーコレーション / 非平衡物理 / 計算物理 / 統計力学 |
Outline of Final Research Achievements |
In this project, I investigated fracture phenomena like the formation of a desiccation crack, which is caused by internal stress increment. In order to understand the nature of phenomena from the view point of the nonequilibrium physics, I made a stochastic model and simulated the model by computers. The model is constructed in a two dimensional square lattice. The following properties are imposed on the model: asymmetric redistribution of stress variables, energy dissipation and so on. In addition, we can discuss a fragment shape and fragment size distributions with the present model. This simple stochastic model enables us to discuss the complicated nature of fracture phenomena theoretically. As a result of the simulation, I found critical phenomena similar to ones observed in equilibrium systems. In this case, the critical exponent is varying as changing external parameters. These results were presented in the meeting of the Physical Society of Japan.
|
Academic Significance and Societal Importance of the Research Achievements |
乾燥や体積収縮などによる内部応力の増加に伴い発生する破壊現象に対する簡単な確率モデルを構成できたことは学術的な意義がある。また今後の三次元への研究の展開や応力緩和の効果を考察する上でも使えるモデルとなっておりさらなる展開が期待できる。また、成果としての臨界現象的な振る舞いは、まだ完全に理解はできてはいないが、非平衡模型で臨界的振る舞いが出ること、またパラメーターにより臨界指数が連続的に変わるように見えることなど、学術的に意義深い性質が発見された。この点はさらなる解析が必要である。社会的には直接影響のある成果はないが、この研究を通じて破壊現象の理解が深まることで工学的応用などに繋げたい。
|
Report
(4 results)
Research Products
(8 results)