Project/Area Number |
16K05867
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Green/Environmental chemistry
|
Research Institution | Kobe University |
Principal Investigator |
KAHAR PRIHARDI 神戸大学, 科学技術イノベーション研究科, 部局研究員 (90520958)
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥4,940,000 (Direct Cost: ¥3,800,000、Indirect Cost: ¥1,140,000)
Fiscal Year 2018: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2017: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2016: ¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
|
Keywords | キシロース発酵 / キシロース取り込み / 酵母 / エタノール発酵 / 実バイオマス / バイオマス / 微生物 / 発酵 / 発現制御 / バイオテクノロジー |
Outline of Final Research Achievements |
Ethanol fermentation produced from lignocellulosic biomass that does not cause competition with food and over-exploitation of cultivated farmland is expected. However, since the yeast Saccharomyces cerevisiae used for fermentation could not metabolize xylose that abundantly produced during the saccharification of lignocellulose biomass, the fermentation yield from real biomass is becoming low, therefore intensive improvement is required. Recently, we have a library of all the yeasts registered at NBRC and have found a robust yeast among them that can high potentially take up xylose even the fermentation occurred under the presence of inhibitory chemical compounds. Therefore, in this study, (1) xylose uptake mechanism was elucidated, (2) related genes involved were identified and isolated, and (3) xylose fermentation yeast suitable for the actual process was obtained by introducing xylose utilization metabolism system into high-performance fermentation yeasts.
|
Academic Significance and Societal Importance of the Research Achievements |
低炭素・循環型社会の構築の必要性を背景に、食糧生産と競合せずかつ賦存量の多いリグノセルロース系バイオマスからバイオエタノール生産が世界的に期待されている。本研究は、その発酵収率を低下させ、実用化を阻む要因である酵母のキシロース代謝能を改善(付与)し、実用化に向けたキシロース代謝酵母の新規プラットフォームを開発するもので、社会的・学術的に高い重要性と緊急性を有している。本研究では、実バイオマスの糖液発酵能の高い酵母にそれらの関連遺伝子を導入することで実プロセスに適したキシロース代謝酵母の開発と同時にストレス環境下での発酵プロセスの実現に本研究の特徴と独創性がある。
|