Project/Area Number |
16K05878
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Green/Environmental chemistry
|
Research Institution | Japan Fine Ceramics Center |
Principal Investigator |
Takahashi Seiji 一般財団法人ファインセラミックスセンター, その他部局等, 主席研究員 (90236290)
|
Research Collaborator |
Okawa Hajime
Suehiro Satoshi
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2016: ¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
|
Keywords | センサ / 多孔質電極 / 多孔質粒子 / 噴霧熱分解法 / 化学プロセス / 酸化窒素 / NOx / 固体電解質 / 混合伝導体 / NOx / 多孔質 / 電極触媒 / 先端機能デバイス / ガスセンサ / セラミックス / 二酸化炭素排出削減 / 大気汚染防止・浄化 |
Outline of Final Research Achievements |
Sensor elements were manufactured using solid spherical particles and porous spherical particles as raw materials of electrode materials. The response electric current for the electrode using the porous spherical particle was smaller than the electrode using the solid spherical particle, but, the gas selectivity of the former was superior to the latter. The response time (response ratio) at which 90% of response electric current was restored after changing NO gas and base gas was evaluated. The response times for the electrodes using solid spherical particles and porous spherical particles were 30 and 39 seconds, respectively, when air was changed to NO gas, and were 10 and 16 seconds, respectively, when NO gas was changed to air. It was found the response ratio of the sensor was improved by using the porous spherical particles. This result was considered to be caused by the better gas penetration performance in the porous electrode.
|
Academic Significance and Societal Importance of the Research Achievements |
La系ペロブスカイトのNO分解触媒活性を電流検出型ジルコニアセンサは酸素共存下でNOx選択応答特性がある有望な技術である。また、多孔質球状粒子を用いた検知極の微細構造制御することで、応答電流値や応答速度の改善が可能な微細構造の形成は、固体電解質型センサ研究分野において学術的インパクトが大きい。 原料粒子の形状を制御することで電極の微構造を制御し、センサの応答特性を改善できることがわかったため、他の種々のセンサ電極にも応用展開が期待できる。
|