Project/Area Number |
16K05972
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Materials/Mechanics of materials
|
Research Institution | Kanazawa University |
Principal Investigator |
SAKAMOTO Jiro 金沢大学, 新学術創成研究機構, 教授 (20205769)
|
Co-Investigator(Kenkyū-buntansha) |
北山 哲士 金沢大学, 機械工学系, 教授 (90339698)
|
Research Collaborator |
KINARI toshiyasu
CHIHARA takanori
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2016: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
|
Keywords | 生体力学 / バイオ材料力学 / 最適設計 / 計算力学 / データベース |
Outline of Final Research Achievements |
In this study, we created a database consisting of three-dimensional shape data of living things to help mechanical engineers to get new design idea. CT scans of bones of various animals were used to generate three-dimensional shape data of about 200 bones in 25 animals. In mechanical design, it is also required to satisfy mechanical specifications such as strength and stiffness. In this research, we not only provide the mechanical engineers the three-dimensional shape of the bone selected from the database, but also developed a method to synthesize multiple bone shapes and obtain an optimal design suitable for the mechanical specification of the structure. Using the developed method, it was shown that the ulna (arm's bone) of the flying squirrel was fine shape to absorb the impact load, and the effectiveness of the method was clarified by applying it to the optimal design of the cane.
|
Academic Significance and Societal Importance of the Research Achievements |
構造の設計を目的とした生物の3次元形状モデルのデータベースは,生物学の分野においても例が無く,新たな観点から生物に関するデータベースを構築した点で学術的価値は高い.生物に詳しくない機械分野の設計技術者であっても,データベースを通じ生物の三次元形状を視覚的に捉えることができ,設計ツールであるCADやCAEに読み込むことができる.そのため,機械設計において新しい設計アイディアを生み出す有効なツールとして普及することが期待できる.また,生物の3次元形状を合成して形状最適化する手法で,仕様に応じた設計もできるようになり,機械産業におけるバイオニックデザインの可能性を広げた社会的意義は大きい.
|