• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Numerical study for the effects of the submicron-scale surface roughness on the dynamic behavior

Research Project

Project/Area Number 16K06070
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Fluid engineering
Research InstitutionUniversity of Toyama

Principal Investigator

SETA Takeshi  富山大学, 大学院理工学研究部(工学), 准教授 (50308699)

Co-Investigator(Kenkyū-buntansha) 内山 知実  名古屋大学, 未来材料・システム研究所, 教授 (90193911)
Research Collaborator TAKANO Noboru  
Project Period (FY) 2016-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Fiscal Year 2016: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Keywords数値流体力学 / 超撥水 / 格子ボルツマン法 / GPGPU
Outline of Final Research Achievements

The smoothed profile-lattice Boltzmann method is proposed to determine the contact line dynamics on a hydrophobic or a hydrophilic curved wall. Two types of smoothed indicator functions are introduced, namely a function that identifies the solid domain for non-slip and non-penetration conditions and a function that denotes the boundary layer for no mass-flux and the wetting boundary conditions. In order to implement the Neumann boundary conditions for the order parameter and the chemical potential, the fluxes from the solid surfaces are distributed to relevant physical valuables through a smoothed profile. Several numerical investigations demonstrate the efficiency of the present method in calculating the contact angle of a droplet on curved surfaces with wall impermeability. The present model provides a simple algorithm to compute the surface normal vector and contact line dynamics on an arbitrarily shaped boundary by using a smoothed-profile.

Academic Significance and Societal Importance of the Research Achievements

実験では計測が困難なサブマイクロスケールにおける空気・水系二相流挙動の数値実験により、現象論的なアプローチに基づくCassie-Baxterの法則等を実証する点に学術的な特色がある。医療用部材の防汚処理から電子基盤の高詳細化に至るまで、超撥水技術には大きな市場規模が期待されているが、摩擦等への耐久性の問題から十分な実用化に結びついていない。サブマイクロスケールでの超撥水現象を解析出来れば、計算と実験との両面から、表面構造の撥水効果への影響を効率的に検証でき、耐久性を考慮した最適な表面微細構造を導き出すことで、超撥水技術の向上と実用化への貢献が期待される。

Report

(4 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (18 results)

All 2019 2018 2017 2016 Other

All Journal Article (6 results) (of which Peer Reviewed: 6 results,  Open Access: 4 results,  Acknowledgement Compliant: 1 results) Presentation (11 results) (of which Int'l Joint Research: 1 results) Remarks (1 results)

  • [Journal Article] Detection of Hemodynamic Characteristics Before Growth in Growing Cerebral Aneurysms by Analyzing Time-of-Flight Magnetic Resonance Angiography Images Alone: Preliminary Results2019

    • Author(s)
      Kimura H, Hayashi K, Taniguchi M, Hosoda K, Fujita A, Seta T, Tomiyama A, Kohmura E
    • Journal Title

      World Neurosurgery

      Volume: 122 Pages: e1439-e1448

    • DOI

      10.1016/j.wneu.2018.11.081

    • NAID

      120006840183

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] 格子ボルツマン法によ曲面境界を有する熱流動解析2018

    • Author(s)
      瀬田剛
    • Journal Title

      計算数理工学論文集

      Volume: 18 Pages: 1-6

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Analytical and numerical studies of the boundary slip in the immersed boundary-thermal lattice Boltzmann method2018

    • Author(s)
      Seta, T., Hayashi, K., and Tomiyama, A.
    • Journal Title

      International Journal for Numerical Methods in Fluids

      Volume: 86 Issue: 7 Pages: 454-490

    • DOI

      10.1002/fld.4462

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] 熱流動解析に対する境界条件強制型Smoothed Profile-Lattice Boltzmann Methodの提案2017

    • Author(s)
      瀬田剛, 内山知実, 高野登
    • Journal Title

      計算数理工学論文集

      Volume: 17 Pages: 2017-2017

    • NAID

      40021715353

    • Related Report
      2017 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Smoothed profile-lattice Boltzmann method for non-penetration and wetting boundary conditions in two and three dimensions2017

    • Author(s)
      Seta, T., Uchiyama, T., and Takano, N.
    • Journal Title

      Computers and Fluids

      Volume: 159 Pages: 64-80

    • DOI

      10.1016/j.compfluid.2017.09.012

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] 界面拡散モデルに対する格子ボルツマン法へのTRT衝突則の適用2016

    • Author(s)
      瀬田剛
    • Journal Title

      計算数理工学論文集

      Volume: 16 Pages: 25-30

    • NAID

      120006395292

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Open Access / Acknowledgement Compliant
  • [Presentation] 格子ボルツマン法によ曲面境界を有する熱流動解析2018

    • Author(s)
      瀬田剛
    • Organizer
      計算数理工学シンポジウム2018
    • Related Report
      2018 Annual Research Report
  • [Presentation] 格子ボルツマン法による回転円筒管内三次元自然対流動解析2018

    • Author(s)
      瀬田剛
    • Organizer
      日本混相流学会混相流シンポジウム2018
    • Related Report
      2018 Annual Research Report
  • [Presentation] 格子ボルツマン法による曲面境界を有する熱流動解析2018

    • Author(s)
      瀬田剛
    • Organizer
      第55回日本伝熱シンポジウム
    • Related Report
      2018 Annual Research Report
  • [Presentation] 熱流動解析に対する境界条件強制型Smoothed Profile-Lattice Boltzmann Methodの提案2018

    • Author(s)
      瀬田剛
    • Organizer
      第35回計算数理工学フォーラム
    • Related Report
      2018 Annual Research Report
  • [Presentation] 熱流動解析に対する境界条件強制型Smoothed Profile-Lattice Boltzmann Methodの提案2017

    • Author(s)
      瀬田剛,内山知実,高野登
    • Organizer
      計算数理工学シンポジウム2017
    • Related Report
      2017 Research-status Report
  • [Presentation] 反復計算に基づく埋め込み境界-熱流動格子ボルツマン法の提案2017

    • Author(s)
      瀬田剛,林公祐,冨山明男
    • Organizer
      第31回数値流体力学シンポジウム
    • Related Report
      2017 Research-status Report
  • [Presentation] Smoothed Profile-Lattice Boltzmann Methodによる濡れ性解析2017

    • Author(s)
      瀬田剛,内山知実,高野登
    • Organizer
      瀬田剛,内山知実,高野登
    • Related Report
      2017 Research-status Report
  • [Presentation] Numerical Study of Wall Wettabilities by Immersed Boundary-Lattice Boltzmann Method2017

    • Author(s)
      Seta, T., Uchiyama, T., and Takano, N.
    • Organizer
      Third International Symposium on Multiscale Multiphase Process Engineering
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] 埋め込み境界-格子ボルツマン法による濡れ性の計算2016

    • Author(s)
      瀬田剛,内山知実,高野登
    • Organizer
      日本機械学会 第94期 流体工学部門 講演会
    • Place of Presentation
      山口大学常盤キャンパス(山口県宇部市常盤台
    • Year and Date
      2016-11-12
    • Related Report
      2016 Research-status Report
  • [Presentation] Cahn-Hilliard 方程式に対する格子ボルツマン法の精度評価2016

    • Author(s)
      瀬田剛,内山知実,高野登
    • Organizer
      日本機械学会 第29回計算力学講演会
    • Place of Presentation
      名古屋大学東山キャンパス(愛知県名古屋市千種区)
    • Year and Date
      2016-09-22
    • Related Report
      2016 Research-status Report
  • [Presentation] 濡れ性を考慮した埋め込み境界-格子ボルツマン法による液滴挙動解析2016

    • Author(s)
      瀬田剛
    • Organizer
      日本混相流学会混相流シンポジウム2016
    • Place of Presentation
      同志社大学今出川キャンパス(京都府京都市上京区)
    • Year and Date
      2016-08-08
    • Related Report
      2016 Research-status Report
  • [Remarks] 瀬田研究室のホームページ

    • URL

      http://www3.u-toyama.ac.jp/seta/

    • Related Report
      2018 Annual Research Report 2017 Research-status Report 2016 Research-status Report

URL: 

Published: 2016-04-21   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi