Project/Area Number |
16K06083
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Fluid engineering
|
Research Institution | Kobe University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
冨山 明男 神戸大学, 工学研究科, 教授 (30211402)
|
Research Collaborator |
HAYASHI Kosuke
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2016: ¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
|
Keywords | 流体工学 / 混相流 / 界面 / 界面活性剤 / 吸着・脱離 / 流体計測 |
Outline of Final Research Achievements |
Numerical simulations of contaminated bubbles or drops adopt a model of adsorption-desorption kinetics developed for quiescent systems. However, the model has rarely been validated due to the lack of experimental data of surfactant concentration at a moving interface. Hence, we experimentally investigated surfactant concentration at the moving interface of a spherical drop falling in a stagnant liquid containing surfactant based on the velocity distribution measured by spatiotemporal filter velocimetry (SFV). The applicability of the Frumkin-Levich model to a drop falling in a contaminated system was examined based on the measured data. The result showed that the evaluation of surfactant concentration using SFV is of great use in understanding adsorption-desorption kinetics at an interface in a contaminated system and in validation of adsorption and desorption models. The Frumkin-Levich model is not applicable to a moving interface, whereas it is applicable to an immobile interface.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究の成果は、流動を伴う界面における界面活性剤濃度計測を可能とする新しい手法を提供するとともに、実験データがほとんどなかった流動界面への界面活性剤の吸着・脱着特性に関する定量的データを提供するものであり、汚染系気泡・液滴の数値計算・モデルの検証および流動界面への吸着・脱離現象の解明に有益である。また、従来多用されてきた静的な吸着・脱離モデルが流動界面に利用できない場合があるとの結論は、汚染系気泡・液滴の数値予測において重要な知見である。さらに、本研究で開発した界面/境界近傍速度分布の精密測定法は、物体周囲流動の分析にも適用可能であり、流体関連分野の計測手法高度化にも貢献するものである。
|