Passive production of hydrogen using a packed bed of combined porous catalyst particles
Project/Area Number |
16K06110
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Thermal engineering
|
Research Institution | Yokohama National University |
Principal Investigator |
OKUYAMA Kunito 横浜国立大学, 大学院工学研究院, 教授 (60204153)
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2016: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
|
Keywords | 熱工学 / 多孔質粒子層 / 液体燃料 / 水素生成 / パッシブプロセス / 複合多孔質粒子充填層 / 毛管力 / 触媒反応器 / 気液二相流 / パッシブ型 / 多孔質粒子充填層 |
Outline of Final Research Achievements |
The passive production of synthesis gas from liquid methanol using a packed bed of combined porous material particles supporting a catalyst is investigated. Heating of the upper portion of a vertical tube packed with the porous particles while the bottom is immersed in liquid methanol causes upward fluid flow due to capillary action enhanced by evaporation. The emergence of a dry region and a resulting increase in temperature can produce synthesis gas due to catalytic reaction, which then flows out of the top end of the tube. The proposed process has been validated by theoretical analysis and experiment. The application of porous particles that are appropriate for each of pre-heating, evaporation and dried regions has been shown to be effective for the efficient production of synthetic gas. The factors that characterize the process and affect the the efficiency of the process have been revealed.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究の提案プロセスは, 加熱蒸発により増進される毛管力により多孔質粒子充填層触媒反応器内に誘起される原料供給と生成物排出の流れを利用して, 液体燃料から水素をパッシブに発生させるものであり, 予熱域, 蒸発域, 反応域に適した粒子を用いることにより, 制御性や効率に優れたプロセスを構築でき, 加えて反応器の可撓性により既設設備に密着設置でき, 廃熱を水素生成用燃料の加熱, 蒸発, 反応に利用できる。得られた水素は炉などの燃料に添加してトータルの燃料消費量を抑制することができ, また燃料電池等の燃料に用いてエネルギー変換効率向上に資することも可能である(化学再生に資する)。
|
Report
(4 results)
Research Products
(3 results)