Detailed chemical kinetics modeling for the combustion of ether compounds in internal combustion engines
Project/Area Number |
16K06112
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Thermal engineering
|
Research Institution | University of Fukui |
Principal Investigator |
SAKAI YASUYUKI 福井大学, 学術研究院工学系部門, 准教授 (70511088)
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2016: ¥2,990,000 (Direct Cost: ¥2,300,000、Indirect Cost: ¥690,000)
|
Keywords | 燃焼 / 内燃機関 / 自着火 / 詳細反応機構 / エーテル / 計算化学 / 火炎伝播 / 熱工学 / 燃焼化学 / 反応モデリング / 燃焼制御 |
Outline of Final Research Achievements |
The rate constants in the low and high-temperature oxidation mechanism of ether compounds were calculated by using quantum chemical and chemical kinetics methods. From the comparisons of rate constants in alkane oxidation, it was found that the rate constants for the reactions with carbon atom next to ether oxygen atom has a large difference from those of alkane. By using these calculated rate constants, we have developed a detailed chemical kinetics model for the oxidation of diethylether. This model well reproduces the measured ignition delay times relevant to the temperature and pressure conditions in internal combustion engines, and also predicts the two distinct peak of heat release from the low-temperature oxidation. It was also shown from reaction path and sensitivity analysis that the beta fission reactions of alkyl-type radical, and beta fission reaction and cyclic-ether formation reaction of hydroxyalkylperoxy type radicals are important for the prediction of ignition.
|
Academic Significance and Societal Importance of the Research Achievements |
ジエチルエーテルを代表としたエーテル化合物の低温及び高温酸化反応の詳細な素反応過程を明らかにした点,ジエチルエーテルの冷炎が二段に分離する実験事実を化学反応モデルで再現することができた点は学術的に意義がある.このような燃料の化学反応に着目した研究は,内燃機関における異常燃焼や煤生成などの現象解明や予測,より高効率・クリーンな次世代の内燃機関とそれを実現する燃料を探索する上で重要なものであり,産業界からも期待されている.
|
Report
(4 results)
Research Products
(6 results)