Project/Area Number |
16K06125
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Thermal engineering
|
Research Institution | Kyushu University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
則永 行庸 名古屋大学, 工学研究科, 教授 (00312679)
|
Research Collaborator |
Tainaka Kazuki
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2016: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
|
Keywords | 混相流 / 乱流 / 燃焼 / 非球形粒子 / 着火 / 窒素化合物 / 直接数値計算 / ラージ・エディ・シミュレーション / 熱分解モデル / 石炭 / 簡略化化学反応機構 / 窒素酸化物 / 非球形粒子運動 / 熱分解 / 詳細化学反応 / 数値解析 / レーザー計測 / 混相燃焼 / 素反応 / モデル化 |
Outline of Final Research Achievements |
Non-spherical particle motion model was developed to simulate the motion of pulverized coal particle and the model was validated by comaring with the experiment. It was also found that the rink-like structure of the particle dispersion in the turbuelnt flow was formed by the dependence of the particle size and the shape. In addition, the behavior of the secondary decomposition of the volatile matter of coal including pyridic-N, pyrrolic-N and quaternary-N were clarified by the elementary reaction analysis with the detailed chemistry and the simplified mechanism was genearated by extracting the major spcies and reactions. Moreover, the numerical simulation with the simplified mechanism on the labratory-scale coaxial jet burner was performed to validate the model and to clarify the detailed structure of the coal flame.
|
Academic Significance and Societal Importance of the Research Achievements |
微粉炭粒子の燃焼は,非球形微粒子の乱流中分散,粒子加熱による窒素化合物を含む揮発分の放出,揮発分の気相中の着火と燃え広がり,および固気燃焼等,極めて複雑な現象を含んでいる.本研究では,これらの現象について数値解析において使用可能なモデル化を図るとともに,実験との比較により,その妥当性の検証を行った.特に,非球形粒子の運動モデルや窒素化合物を含む揮発分の簡略化反応機構について,詳細な物理的,または化学的挙動に基づく物理モデルを初めて提案し,その有効性を確認した.これらの成果により,今後,微粉炭燃焼数値解析のより一層の精度向上を期待することができる.
|