Project/Area Number |
16K06127
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Thermal engineering
|
Research Institution | Saga University |
Principal Investigator |
Mitsutake Yuichi 佐賀大学, 海洋エネルギー研究センター, 教授 (20253586)
|
Research Collaborator |
LIU Yang
Monde Masanori
Fukuda Akito
Nakai Hiroshi
Goto Takeshi
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2018: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2017: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2016: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
|
Keywords | 噴流冷却 / ぬれ / ウェッティングフロント / 遷移沸騰 / 衝突噴流 / 遷移沸騰熱伝達 / 非定常熱伝導 / 高温面のぬれ / クエンチング / 高温面急速冷却 / 非定常遷移沸騰 / ウエッティングフロント / クエンチ / 沸騰冷却 / 自発核生成 / 高温面冷却 |
Outline of Final Research Achievements |
An experimental study was conducted to elucidate characteristics of transient cooling heat transfer during impinging jet quenching on a hot surface being much higher than the boiling temperature. Since the quenching heat transfer is strongly governed with recovery of wetted area on the surface, measurement techniques with optical and thermal sensors were developed to characterize the wetting front (W.F.), that is specified the outer boundary of the wetted area. Characteristics of the transient behavior of the W.F. and heat transfer in the vicinity of the W.F. were clarified for different liquid temperatures, jet velocities and initial solid temperatures. A model to estimate the W.F. behavior was also proposed with coupling analysis of the transient heat conduction in the solid body with the heat transfer of the impinging jet flow on the surface. The model was verified with the experimental data.
|
Academic Significance and Societal Importance of the Research Achievements |
工業的に幅広い応用分野を持つ高温面噴流冷却では,固液接触時の急速蒸気生成により安定なぬれ状態が生じない膜沸騰伝熱から,高温面のぬれ回復に伴って核沸騰あるいは単相熱伝達へ遷移し,ぬれ回復による沸騰遷移時に冷却速度が急増する.高温面上のぬれ面を規定するぬれ先端のウエッティングフロント(WF)の挙動は,冷却速度を予測する上で不可欠な情報となる.本研究で得られたWF位置の時間変化特性とその挙動予測モデルは,噴流による高温面冷却の応用分野,例えば鉄鋼材料の製造プロセスにおける温度制御の高精度化への寄与が期待される.
|