Analyze of mechanical effect of musculo-skeletal structure that realizes stabilization of motion including a impact without time delay
Project/Area Number |
16K06201
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Intelligent mechanics/Mechanical systems
|
Research Institution | Osaka Institute of Technology |
Principal Investigator |
|
Research Collaborator |
Omae Shingo
Yamada Kosuke
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2016: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
|
Keywords | 流体駆動アクチュエータ / 跳躍運動 / 瓦礫移動 / 機構的な制御 / 脚ロボット / 流体駆動筋肉 / 機構による制御 / 人工筋肉 / 連続跳躍 / 筋駆動ロボット / 二関節筋 / 空気圧人工筋肉 / 跳躍ロボット / 多関節筋 / 知能ロボティックス / 機械力学・制御 |
Outline of Final Research Achievements |
In this research, we adopted mechanical structure in order to deal with a landing impact in case of jumping and running and a collision impact in case of exploring in a wreckage instead of a feed back controller that requires time delay. In the jumping study, we adopted viscoelastic pneumatic actuators for absorbing the landing impact and searched an appropriate positions of the actuators that influences behavior of landing. From physical simulator and physical robot experiments, we found that the robot achieved stable landing even if the landing angle and posture are different in some degree. In the exploring in the wreckage, we adopted water driven chamber that can shift its center of mass, and we found that the robot broke through a small gap, and it estimated the shape of the obstacle while breaking through the gap.
|
Academic Significance and Societal Importance of the Research Achievements |
従来ロボットを制御するにあたり,外部から加わる力に対しては計測と運動計画,実行をループとしたフィードバック制御により対処してきた.しかしこの枠組みは時間遅れが発生するため,瞬間的な対応が求められる衝突を含む運動には不向きであった.本研究では柔軟なアクチュエータを用いて時間遅れ無しに衝撃に対応し,更に衝撃を利用して望ましい運動を生成できる機構について研究した.得られた結果はロボットが衝突を伴う運動を実現するにあたり,その身体設計に大きな貢献になることが期待される.
|
Report
(4 results)
Research Products
(19 results)