• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of Water Treatment Technology by Dielectric Barrier Discharge Produced on Liquid Surface for High-Speed Degradation of Persistent Substances

Research Project

Project/Area Number 16K06226
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Power engineering/Power conversion/Electric machinery
Research InstitutionThe University of Tokushima

Principal Investigator

TERANISHI Kenji  徳島大学, 大学院社会産業理工学研究部(理工学域), 准教授 (80435403)

Co-Investigator(Kenkyū-buntansha) 下村 直行  徳島大学, 大学院社会産業理工学研究部(理工学域), 教授 (90226283)
Project Period (FY) 2016-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥4,940,000 (Direct Cost: ¥3,800,000、Indirect Cost: ¥1,140,000)
Fiscal Year 2018: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2016: ¥3,250,000 (Direct Cost: ¥2,500,000、Indirect Cost: ¥750,000)
Keywords誘電体バリア放電 / 難分解性物質 / 水処理 / 酢酸 / OHラジカル
Outline of Final Research Achievements

Water treatment technology by a dielectric barrier discharge (DBD) capable of increasing the discharge area was developed for the purpose of realizing faster degradation of persistent substances with the higher efficiency. In the present water treatment reactor, the persistent substances can be degraded by the DBD plasma generated on the surface of the target solution supplied as a water film on the planer electrode. The adjustment mechanism for the electrode gap distance, which is quite important to form the water film on the electrode, was constructed to improve the operability of the present water treatment reactor. When the argon gas was used as the discharge gas, the decoloriaztion efficiency of the indigo carmine and the degradation efficiency of the acetic acid were improved by decreasing the gap distance. It was concluded that the increase in the OH radical formations due to the shorter gap distance configuration is one of the factors that improve both the efficiencies.

Academic Significance and Societal Importance of the Research Achievements

本研究では,アルゴンガスを用いた誘電体バリア放電(DBD)を,薄膜状に形成した処理対象水面上で生成し,ギャップ長を短くすることで,難分解性物質の分解効率を向上させることができた。今後は目的・用途に応じて水処理装置の大規模化を行うことで,難分解性物質分解の高速化や,OHラジカルを効率よく生成できる放電ガスを模索することで,さらなる分解効率向上が期待できる。これにより,放電プラズマによる水処理技術の早期実用化に貢献できる可能性がある。

Report

(4 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (5 results)

All 2019 2017 Other

All Presentation (4 results) (of which Int'l Joint Research: 1 results) Remarks (1 results)

  • [Presentation] 模擬空気を原料とした誘電体バリア放電水処理装置による酢酸の分解2019

    • Author(s)
      寺西 研二,米沢 昌紘,長濱 蒼,浜田 俊輔,下村 直行,鈴木 進
    • Organizer
      平成31年電気学会全国大会
    • Related Report
      2018 Annual Research Report
  • [Presentation] アルゴン誘電体バリア放電によるインジゴカルミン水溶液の脱色特性2017

    • Author(s)
      寺西 研二,村田 啓輔,米沢 昌紘,下村 直行
    • Organizer
      平成29年電気学会全国大会
    • Place of Presentation
      富山大学(富山県富山市)
    • Year and Date
      2017-03-15
    • Related Report
      2016 Research-status Report
  • [Presentation] Decomposition of Acetic Acid Solution by Dielectric Barrier Discharge2017

    • Author(s)
      Kenji Teranishi, Murata Keisuke, Yonezawa Masahiro and Naoyuki Shimomura
    • Organizer
      33rd International Conference on Phenomena in Ionized Gases
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] 水面上で生成したアルゴン誘電体バリア放電による酢酸の分解2017

    • Author(s)
      米沢 昌紘, 村田 啓輔, 寺西 研二, 下村 直行
    • Organizer
      平成29年度電気関係学会四国支部連合大会
    • Related Report
      2017 Research-status Report
  • [Remarks] 徳島大学 研究者総覧

    • URL

      http://pub2.db.tokushima-u.ac.jp/ERD/person/155803/profile-ja.html

    • Related Report
      2018 Annual Research Report 2017 Research-status Report 2016 Research-status Report

URL: 

Published: 2016-04-21   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi