Project/Area Number |
16K06388
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Measurement engineering
|
Research Institution | Tokyo Metropolitan University |
Principal Investigator |
Uchida Satoshi 首都大学東京, システムデザイン研究科, 准教授 (90305417)
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥4,810,000 (Direct Cost: ¥3,700,000、Indirect Cost: ¥1,110,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Fiscal Year 2016: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
|
Keywords | 誘電泳動 / アセンブリ / ナノ粒子 / セルオートマトン / ピット / 陽子線描画技術 / 計測工学 / 計測システム |
Outline of Final Research Achievements |
The results obtained in this study are listed below. (1) The pit-type three-dimensional dielectrophoretic device was numerically modeled to simulate particle behavior under various operating conditions. (2) We examined the substrate materials and process steps, and prototyped the actual device, and observed the dielectrophoretic collection behavior of standard particles and gold nanoparticles. (3) Changes in the amount of intra-pit aggregation of gold nanoparticles were investigated with respect to control parameters. (4) In addition to constructing an impedance measurement device, changes in the amount of lamination were examined theoretically. (5) The uniformity of particle adhesion was confirmed in the pit, and a different depth device was made on a trial basis. (6) The applied voltage and time were parameterized to derive the threshold of sticking and melting. Moreover, the stability of the control system was verified.
|
Academic Significance and Societal Importance of the Research Achievements |
申請者が発展的に整備したDEPVMおよびDEPIMは、アセンブリとの同時操作が可能であり、迅速性と簡易性に優れている。また、ナノ粒子構造体の形成後では計測が困難な、経時的な凝集量や積層状態を定量化するため、作成デバイスを非破壊で評価できる。 一般にDEPアセンブリは、媒質中の界面分極効果により、様々な誘電粒子や金属粒子の操作が可能であり、その適用性は極めて広い。また、電気的な能動制御であるため、粒子形成状態の再現性も高い。将来的に本システムにおける堆積制御法と積層診断法が確立されれば、超伝導材料や生体有機材料を含む様々な粒状薄膜形成への展開も期待できる。
|