• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Detection / isolation / recovery of sensor failure by particle filters

Research Project

Project/Area Number 16K06418
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Control engineering/System engineering
Research InstitutionKyushu Institute of Technology

Principal Investigator

Nishida Takeshi  九州工業大学, 大学院工学研究院, 准教授 (30346861)

Project Period (FY) 2016-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2016: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Keywordsparticle filter / feedback system / state observer / パーティクルフィルタ / 異常の定量化 / 状態量推定 / 状態フィードバック / オブザーバ / 故障検出 / ノイズの確率分布 / リサンプリング / 故障検知・隔離・回復 / ロバス ト残差推定
Outline of Final Research Achievements

On the state estimation of a system including stochastic noises, particle filter (PF: particle filter) discretely approximates its filter distribution by using state hypotheses (particles) of many states, so it is possible to estimate the state of the system including non-Gaussian noise.In this research, we proposed a method to simultaneously execute estimation of control system state and quantification of abnormality by using PF as an observer of state feedback control system. Specifically, we proposed a method to detect sensor abnormalities by quantifying the deviation of the control system's behavior from a given model by monitoring the particle distribution of the PF incorporated into the control system as an observer.

Academic Significance and Societal Importance of the Research Achievements

自動化が進む産業機器やインフラ設備において故障検出技術は重要である.しかし従来技術でば,対象とする機器の自動化装置や制御装置とは別に,あらたに故障検出のための機器を設置する必要があるため,高額な費用や故障検出器自体のメンテナンスが発生する.一方で,本研究成果を活用すれば,すでに搭載されている制御装置内の伝達ノイズを監視するだけで故障が可能になる.したがって,本研究成果は,広く利用されている機器の安全性を保障するために有用な基礎技術であると考えられる.

Report

(4 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (4 results)

All 2018 2017 2016

All Journal Article (1 results) (of which Peer Reviewed: 1 results,  Acknowledgement Compliant: 1 results) Presentation (3 results) (of which Int'l Joint Research: 2 results)

  • [Journal Article] Development of State Estimation Filter Simulator Built on an Integrated GUI Framework2016

    • Author(s)
      Masaru Morita, Takeshi Nishida
    • Journal Title

      Journal of Advanced Computational Intelligence and Intelligent Informatics

      Volume: 20 Issue: 5 Pages: 721-729

    • DOI

      10.20965/jaciii.2016.p0721

    • NAID

      130007673347

    • ISSN
      1343-0130, 1883-8014
    • Year and Date
      2016-09-20
    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Presentation] パーティクルフィルタによる状態推定と異常検知2018

    • Author(s)
      西田健
    • Organizer
      第37回計測自動制御学会九州支部学術講演会
    • Related Report
      2018 Annual Research Report
  • [Presentation] Parameter Optimization of Frequency Estimation by Distribution Using Helping Optimization Based Planners: Generating Trajectories Seeds using Motion Datasets2017

    • Author(s)
      T. Barbie, R. Kabutan, R. Tanaka, T. Nishida
    • Organizer
      ICRA2017 Workshop "AI in Automation"
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research
  • [Presentation] Development of Real-time Environment Recognition System using LiDAR for Autonomous Driving2017

    • Author(s)
      N. Tokudome, S. Ayukawa, S. Ninomiya, S. Enokida, T. Nishida
    • Organizer
      ICT-ROBOT2017
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2016-04-21   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi