Computational alloy design for improvement of mechanical properties in HCP metals
Project/Area Number |
16K06714
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Physical properties of metals/Metal-base materials
|
Research Institution | Japan Atomic Energy Agency |
Principal Investigator |
Tsuru Tomohito 国立研究開発法人日本原子力研究開発機構, 原子力科学研究部門 原子力科学研究所 原子力基礎工学研究センター, 研究副主幹 (80455295)
|
Research Collaborator |
Somekawa Hidetoshi
Chrzan Daryl C
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Fiscal Year 2016: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
|
Keywords | 転位構造 / 合金設計 / 電子状態解析 / 金属物性 / 力学特性 / 転位運動 / 計算科学 / 塑性異方性 / 六方晶合金 / 転位芯構造解析 / 破壊靱性評価 / 第一原理計算 / 格子欠陥 / 計算物理 |
Outline of Final Research Achievements |
Solution strengthening is a well-known approach to tailoring the mechanical properties of structural alloys. Ultimately, the properties of the dislocation/solute interaction are rooted in the electronic structure of the alloy. Accordingly, we compute the electronic structure associated with, and the energy barriers to dislocation cross-slip. The energy barriers so obtained can be used in the development of multiscale models for dislocation mediated plasticity. The computed electronic structure can be used to identify substitutional solutes likely to interact strongly with the dislocation. Using the example of a-type screw dislocations in HCP metals, we compute accurately the Peierls barrier to secondary slip and argue that some solutes should interact strongly with the studied dislocation, and thereby decrease the dislocation slip anisotropy in the alloy.
|
Academic Significance and Societal Importance of the Research Achievements |
合金化に対する電子状態を考慮した欠陥構造のモデリングに注力し,転位構造と合金元素の電子的な相互作用がもたらす影響を評価する新たな枠組みを構築することで,材料の力学特性の理解に大きく貢献した.さらに,材料設計における普遍的な問題である合金化による力学特性の評価において,従来の試行錯誤で行われていた材料開発に新たなアプローチを提案した.これらの元素戦略による材料設計は学術的な革新性のみならず,資源の少ない我が国において効率的な材料開発が可能になるという観点から工学的にも意義がある.
|
Report
(4 results)
Research Products
(47 results)