Fabrication of ultra-fine composite fiber structures with nanopores to realize high surface friction
Project/Area Number |
16K06740
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Composite materials/Surface and interface engineering
|
Research Institution | Yamagata University |
Principal Investigator |
Ito Hiroshi 山形大学, 大学院有機材料システム研究科, 教授 (20259807)
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2018: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2017: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2016: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
|
Keywords | 一次元ナノ構造 / ナノインプリント / ナノ複合材料 / 多孔質ナノ構造 / 表面摩擦 / ナノロッド構造 / 極細複合繊維 / ナノ多孔構造 / グラフィン / ポリマーブレンド / 自己組織化 |
Outline of Final Research Achievements |
Enhancement of surface friction coefficient is mainly depended on materials used properties and surface roughness of surfaced structures. The materials and structural development for fabricating one-dimensional nanostructures need to be clarified by using thermal nanoimprint process with AAO templates. In this study, materials development of polystyrene /graphene nanoplatelets was used to fabricate nanostructures. The result reveal that this composite nanostructures with diameter 100 nm and length of 10-70 µm can be fabricated. The maximum friction coefficient of this composite nanostructure up to 0.61 can be achieved. The structural development of one-dimensional nanostructure as preparing mesoscale pore one-dimensional nanostructure have been also investigated. Higher friction coefficient of porous nanostructures compared with non-porous nanostructure due to the increase of surface roughness at nanoscale also caused by pore formation.
|
Academic Significance and Societal Importance of the Research Achievements |
蓮の葉、ヤモリの足や蝉の羽等の生体模倣技術と生体表面機能性をきっかけとし、ナノ制御された表面加工プロセスが提案されており、一次元(1D)ナノ構造を様々な高分子フィルム上に複製している。これらの一次元ナノ構造は、疎水性、表面摩擦および接着性などの多機能特性を示し、生物医学的な用途、ナノセンシング材料、生体足場と結合した触媒、およびエネルギー貯蔵において応用展開が期待されている。本研究では、表面摩擦特性を向上させることができる垂直配向複合ナノ構造(VACNs)および垂直配向多孔質ナノ構造(VAPNs)を実現する材料創製と構造制御について検討した。
|
Report
(4 results)
Research Products
(19 results)