Controlling the indium oxide surface by hydrogen radical treatment and its applications
Project/Area Number |
16K06741
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Composite materials/Surface and interface engineering
|
Research Institution | The University of Tokyo |
Principal Investigator |
Higurashi Eiji 東京大学, 大学院工学系研究科(工学部), 准教授 (60372405)
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2016: ¥2,730,000 (Direct Cost: ¥2,100,000、Indirect Cost: ¥630,000)
|
Keywords | 水素ラジカル / インジウム / 表面酸化膜 / 還元処理 / 再酸化 / はんだペースト / バンプ形成 / 銅 / インジウムボール / プラズマ処理 / 表面処理 / 低温接合 |
Outline of Final Research Achievements |
Indium is a favorable metal for solder due to its properties such as its low melting point of 156.6℃, good wettability, high ductility, good thermal conductivity, and high malleability. However, indium is extremely easy to oxidize. The effects of hydrogen radical treatment on indium surface oxide removal was conducted by spreading ratio test of indium balls, and it was found that hydrogen radical treatment longer than 20 s at temperatures higher than 170℃ results in successful surface oxide removal. X-ray Photoelectron Spectroscopy analysis was used to study the re-oxidation behavior after treatment, and it was found that hydrogen radical treatment slows down the re-oxidation of indium compared to surface oxide removal realized by physical bombardment of an argon fast atom beam. Based on these experimental results, we have developed indium bumping process which does not require cleaning of flux residue using non-residue indium solder paste and hydrogen radicals.
|
Academic Significance and Societal Importance of the Research Achievements |
近年、高感度・高応答速度である冷却型赤外線センサの開発が進められており、その実装には低温環境でも優れた延性・展性を有するインジウムが用いられ、接合時には酸化膜を除去するフラックスが用いられている。フラックス残渣は腐食性を有するため、フラックス残渣洗浄工程の必要のない酸化膜除去技術が求められている。本研究で、環境にやさしいドライプロセスによる還元効果や再酸化過程を明らかにしたことは、将来の微細バンプ開発などのフラックス残渣洗浄の困難な応用に有益な学術的知見を提供するものと考えられる。新しいデバイス創出のための生産基盤技術として社会や産業界に寄与するものと期待される。
|
Report
(4 results)
Research Products
(20 results)