Establishment of palladium thin membrane preparation method onto porous SUS introduced pore control layer for high hydrogen diffusion
Project/Area Number |
16K06828
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Properties in chemical engineering process/Transfer operation/Unit operation
|
Research Institution | The University of Tokushima |
Principal Investigator |
KATOH Masahiro 徳島大学, 大学院社会産業理工学研究部(理工学域), 准教授 (80274257)
|
Co-Investigator(Kenkyū-buntansha) |
杉山 茂 徳島大学, 大学院社会産業理工学研究部(理工学域), 教授 (70175404)
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2017: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2016: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
|
Keywords | パラジウム膜 / 水素高速拡散 / シリカ中間層 / 球状シリカ微粒子 / 耐久性向上 / ゼオライト中間層 / アルカリ処理 / 膜分離 |
Outline of Final Research Achievements |
In this study, spherical silica powders introduced as a pore control layer to a porous SUS support with average pore diameter; 0.5 micrometer; having wide pore distribution. The thickness of palladium membrane electro-less plated was 10.9 micrometer and the membrane showed high hydrogen permeance and the durability. For having thinner palladium membrane, the particle size and the amount of introduced silica particles were optimized for porous SUS support with average pore diameter; 0.2 micrometer. The thickness of membrane reduced to 1/3 times, the hydrogen permeance increased three times and high hydrogen diffusion was achieved. As the result, the optimized introduction method of spherical silica powders to porous SUS supports was established as the preparation technic of thin palladium membrane.
|
Academic Significance and Societal Importance of the Research Achievements |
水素社会の実現にはいくつかの方策がある。我々が注目する「オンサイト水素製造」では、パラジウム(Pd)膜をベースとした膜型水素製造器の開発が進められている。しかし、Pdの価格は昨今高騰しており、高い水素透過性を得るためにも薄膜化が求められる。そこで、本研究でこの薄膜化を実現するために確立した「支持体細孔をセラミックス系微粒子で制御する技術」は微粒子工学の観点からも意義深い。さらに、「制御された支持体表面へのPdの薄膜化技術」は社会実装可能な技術の提案という点から社会的意義が大きい。
|
Report
(4 results)
Research Products
(14 results)