Syntheses of TiO2 composite and hollow particles in pico-liter droplets and their application development
Project/Area Number |
16K06837
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Properties in chemical engineering process/Transfer operation/Unit operation
|
Research Institution | Doshisha University |
Principal Investigator |
|
Research Collaborator |
KADATA kazunori
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥4,680,000 (Direct Cost: ¥3,600,000、Indirect Cost: ¥1,080,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2016: ¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
|
Keywords | 中空粒子 / 多孔質 / 複合化 / ピコリットル反応場 / 化学工学 / 構造・機能材料 / 触媒・化学プロセス |
Outline of Final Research Achievements |
In this study, nano-dispersed mono-dispersed porous hollow particles of TiO2 were synthesized by using an ink jet nozzle to form droplets precisely limited to pico-liter size and to utilize the inside of the droplets as a reaction field. Vitamin C was introduced to inside particles for improvement of the sustained release performance and enclosing of nitrogen compounds in hollow particles was performed to improve photocatalytic activity in visible light. In addition, droplets were formed in the tube reactor, oxide particles were produced in the droplets, and the hollow structure and particle size were compared with the process by the inkjet nozzle and evaluated. Furthermore, the comparison with the droplet formation process by an electrostatic atomization process in liquid was also carried out and evaluated.
|
Academic Significance and Societal Importance of the Research Achievements |
一般の工業晶析において,粒子形態を精緻に制御することは難しい。例えば単分散粒子群を得たい場合,反応器内の温度,濃度を均一にしながら実施する必要があり,様々な工夫が必要となる。このような困難を克服する一つの解決策が,反応場を微小な空間に限ることである。核生成、結晶成長によって粒子が形成され,最終的な形態も決定されることを考えると,液滴を反応場として粒子を合成すことは,境界を設けて物理的に制御できるため,直接粒子形成パラメターを制御するより容易であり確実である。本研究で取り上げたプロセスは,液滴の制御性としては抜群であり,粒子材料設計の幅が広がり,学術的にも社会的にも意義深いと考えられる。
|
Report
(4 results)
Research Products
(14 results)