Project/Area Number |
16K06971
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Energy engineering
|
Research Institution | Osaka University |
Principal Investigator |
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2018: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2017: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2016: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
|
Keywords | 地中送電ケーブル / 導体温度 / 熱等価回路 / 送電容量 / 出力変動型電源 / 太陽光発電 / ケーブル温度 |
Outline of Final Research Achievements |
Assuming that intermittent renewable generation is sinusoidal line current based on root-mean-square (RMS), this study evaluates the conductor temperature of a single-core XLPE underground cable. To analyze the increase in the temperature of the cable, the multistage Cauer-type thermal equivalent circuit model for XLPE cables consisting of several parts of thermal resistance and thermal capacitance is applied for representing the heat transfer more precisely from the central conductor to the outer protective sheath. Moreover, this study evaluates the temperature dependency of the effective AC conductor resistance of power cables for dynamic line ratings. Through the numerical simulations, although the line current changes as the step increases, there is still a 60-min time margin to reach the conductor temperature limit. From the viewpoint of transmission-line congestion relief, this is a significant advantage of the dynamic line ratings of underground cable systems.
|
Academic Significance and Societal Importance of the Research Achievements |
地中送電ケーブルに流すことのできる最大電流は,熱に弱い絶縁体が曝される最も高温になる部分として導体部分の温度上限値に基づき決められている.本研究では,太陽光発電や風力発電により通電電流が従来よりも短時間で大きく変化することに着目し,ケーブル導体温度を推定するための熱等価回路モデルについて検討した.評価結果より,瞬時的な電流変化に対して導体温度が上限値に達するまでに1時間程度の時間遅れがあることを示した.このことから蓄電池等の高速応答可能なリソースだけでなく,火力発電機の出力調整や需要家の空調設備等の比較的ゆっくりとしたリソースでも過負荷解消に利用できる可能性があることを示した.
|