• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Fine-Grained Classification of Person Attributes with Surveillance Cameras

Research Project

Project/Area Number 16K12460
Research Category

Grant-in-Aid for Challenging Exploratory Research

Allocation TypeMulti-year Fund
Research Field Perceptual information processing
Research InstitutionNagoya University

Principal Investigator

Kato Jien  名古屋大学, 情報科学研究科, 准教授 (70251882)

Co-Investigator(Kenkyū-buntansha) ワン ユ  名古屋大学, 国際開発研究科, 助教 (60724169)
Project Period (FY) 2016-04-01 – 2018-03-31
Project Status Completed (Fiscal Year 2017)
Budget Amount *help
¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
Fiscal Year 2017: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2016: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Keywords歩行者属性の詳細認識 / 歩行者認識 / 部分と全体を着目したCNN融合 / 超解像処理 / グラフィックモデル / 姿勢推定 / CNNの融合 / 画像、文章、音声等認識 / 人工知能
Outline of Final Research Achievements

The objective of this research is to recognize fine-grained categories of person attributes from enormous surveillance videos. To achieve this goal, we focus on 4 kinds of pedestrian attributes including 14 categories. We developed five methods to enhance the accuracy of fine-grained classification, including (1) super-resolution based image processing, which helps to recover the image details; (2) patch dividing based feature extraction, which extracts features in a way that preserves the spatial layout of inputs; (3) fusing multiple CNN models, which acquires more detailed features; (4) pose-wise classifier sharing, which learns robust classifiers and makes robust predictions; and (5) graphical model based inference, which utilizes the interdependence between different subcategories to update raw estimations to better ones. We conducted experiments on a pedestrian data set, and confirmed superior performance of our approach based on these methods over the state-of-the-art.

Report

(3 results)
  • 2017 Annual Research Report   Final Research Report ( PDF )
  • 2016 Research-status Report
  • Research Products

    (8 results)

All 2018 2017 2016

All Journal Article (2 results) (of which Peer Reviewed: 1 results,  Acknowledgement Compliant: 1 results) Presentation (6 results) (of which Int'l Joint Research: 3 results)

  • [Journal Article] 深層学習アプローチに基づいた歩行者の詳細認識2018

    • Author(s)
      加藤ジェーン,王彧,小久保嘉人
    • Journal Title

      画像ラボ

      Volume: 2 Pages: 15-24

    • Related Report
      2017 Annual Research Report
  • [Journal Article] 歩行者の詳細認識精度を向上させるための追加型手法2017

    • Author(s)
      小久保嘉人,王彧,加藤ジェーン,間瀬健二
    • Journal Title

      電子情報通信学会論文誌

      Volume: J100-D Pages: 265-276

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Presentation] マルチレベルのパーツマイニングを用いた歩行者検出2018

    • Author(s)
      小平美沙季,王彧,加藤ジェーン
    • Organizer
      電子情報通信学会パターン認識・メディア理解研究会(PRMU)
    • Related Report
      2017 Annual Research Report
  • [Presentation] Solving Occlusion Problem in Pedestrian Detection by Construction Discriminative Part Layers2017

    • Author(s)
      Cao Cong, Yu Wang, Jien Kato, Guanwen Zhang and Kenji Mase
    • Organizer
      IEEE Winter Conference on Applications of Computer Vision (WACV 2017)
    • Place of Presentation
      Santa Rosa, U.S.A.
    • Year and Date
      2017-03-27
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research
  • [Presentation] Collision Risk Rating of Traffic Scene from Dashboard Cameras2017

    • Author(s)
      Yu Wang and Jien Kato
    • Organizer
      International Conference on Digital Image Computing: Techniques and Application (DICDA 2017)
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 部分と全体を注目したCNNの融合による歩行者の属性の詳細認識2017

    • Author(s)
      小久保嘉人,王彧,加藤ジェーン,間瀬健二
    • Organizer
      電子情報通信学会パターン認識・メディア理解研究会(PRMU)
    • Place of Presentation
      北海道大学
    • Related Report
      2016 Research-status Report
  • [Presentation] Part-aware CNN for Pedestrian Detection2017

    • Author(s)
      Cong Cao, Yu Wang, Jien Kato and Kenji Mase
    • Organizer
      電子情報通信学会パターン認識・メディア理解研究会(PRMU)
    • Place of Presentation
      北海道大学
    • Related Report
      2016 Research-status Report
  • [Presentation] Add-on Strategies for Fine-grained Pedestrian Classification2016

    • Author(s)
      Yoshihito Kokubo, Yu Wang, Jien Kato, Guanwen Zhang and Kenji Mase
    • Organizer
      International Conference on Digital Image Computing: Techniques and Application
    • Place of Presentation
      Gold Coast, Australia
    • Year and Date
      2016-11-30
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2016-04-21   Modified: 2019-03-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi