• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

An ensemble inverse reinforcement learning for exceeding the expert skills

Research Project

Project/Area Number 16K12485
Research Category

Grant-in-Aid for Challenging Exploratory Research

Allocation TypeMulti-year Fund
Research Field Intelligent informatics
Research InstitutionYokohama National University

Principal Investigator

HAMAGAMI Tomoki  横浜国立大学, 大学院工学研究院, 教授 (30334204)

Project Period (FY) 2016-04-01 – 2018-03-31
Project Status Completed (Fiscal Year 2017)
Budget Amount *help
¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
Fiscal Year 2017: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2016: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Keywords逆強化学習 / 強化学習 / アンサンブル学習 / 不完全知覚 / ブースティング / 機械学習 / 知能情報処理
Outline of Final Research Achievements

Ensemble inverse reinforcement learning from semi-experts' behavior is proposed. In many inverse reinforcement learning (IRL) problems, the expert agent which has ideal rewards for achieving the goal is supposed to be existing. However, in real-world problem, the expert is not always observed. Moreover, the estimated reward function includes the bias depending on its inherent behavior if the reward for achieving the goal
task is estimated from one agent. In order to overcome the limitation of IRL, we apply Adaboost, one of ensemble and boosting approach, to IRL and integrate estimated reward functions from semi-expert agents. To confirm the effectiveness of the proposed method in the grid world including incomplete areas, we compared the results of reinforcement learning using estimated reward functions and integrated reward function by simulation. The simulation result shows the proposed method can estimate the reward
adaptively.

Report

(3 results)
  • 2017 Annual Research Report   Final Research Report ( PDF )
  • 2016 Research-status Report
  • Research Products

    (8 results)

All 2017 2016

All Journal Article (3 results) (of which Peer Reviewed: 3 results) Presentation (5 results) (of which Int'l Joint Research: 2 results)

  • [Journal Article] An Analysis of Rule Deletion Scheme in XCS on Reinforcement Learning Problem2017

    • Author(s)
      Masaya Nakata, Tomoki Hamagami
    • Journal Title

      Journal of Advanced Computational Intelligence and Intelligent Informatics

      Volume: 21 Issue: 5 Pages: 876-884

    • DOI

      10.20965/jaciii.2017.p0876

    • NAID

      130007520184

    • ISSN
      1343-0130, 1883-8014
    • Year and Date
      2017-09-20
    • Related Report
      2017 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Ensemble Inverse Reinforcement Learning from Semi-Expert Agents2017

    • Author(s)
      冨田真司,濱津文哉,濱上知樹
    • Journal Title

      IEEJ Transactions on Electronics, Information and Systems

      Volume: 137 Issue: 4 Pages: 667-673

    • DOI

      10.1541/ieejeiss.137.667

    • NAID

      130005530130

    • ISSN
      0385-4221, 1348-8155
    • Related Report
      2017 Annual Research Report 2016 Research-status Report
    • Peer Reviewed
  • [Journal Article] Revisit of Rule-Deletion Strategy for XCSAM Classifier System on Classification2017

    • Author(s)
      Masaya Nakata, Tomoki Hamagami
    • Journal Title

      Transactions of the Institute of Systems, Control and Information Engineers

      Volume: 30 Issue: 7 Pages: 273-285

    • DOI

      10.5687/iscie.30.273

    • NAID

      130006890010

    • ISSN
      1342-5668, 2185-811X
    • Related Report
      2017 Annual Research Report
    • Peer Reviewed
  • [Presentation] パラメータ共有型マル チモーダル深層自己符号化器を用いた部分観測下多様体学習の検討2017

    • Author(s)
      佐々木勇人, 中田雅也, 濱津文哉, 濱上知樹
    • Organizer
      第79 回情報処理学会全国大会
    • Place of Presentation
      名古屋
    • Year and Date
      2017-03-16
    • Related Report
      2016 Research-status Report
  • [Presentation] 転移学習によるDeep Q-Networkの学習高速化に向けた検討2017

    • Author(s)
      足立一樹, 佐々木勇人, 中田雅也, 濱津文哉, 濱上知樹
    • Organizer
      第79 回情報処理学会全国大会
    • Place of Presentation
      名古屋
    • Year and Date
      2017-03-16
    • Related Report
      2016 Research-status Report
  • [Presentation] Effect of Parameter Sharing for Multimodal Deep Autoencoders2017

    • Author(s)
      Hayato Sasaki, Masaya Nakata, Fumiya Hamatsu, Tomoki Hamagami
    • Organizer
      Proc. of IEEE SMC2017
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research
  • [Presentation] マルチモーダル深層自己 符号化器におけるモダリティ間パラメータ共有の検討2016

    • Author(s)
      佐々木勇人, 中田雅也, 濱津文哉, 濱上知樹
    • Organizer
      第10 回コンピュー テーショナル・インテリジェンス研究会
    • Place of Presentation
      富山
    • Year and Date
      2016-12-16
    • Related Report
      2016 Research-status Report
  • [Presentation] Construction of visual codebook for speeding up visual-based Simultaneous Localization and Mapping2016

    • Author(s)
      Hayato Sasaki, Fumiya Hamatsu, Tomoki Hamagami
    • Organizer
      The International Conference on  Electrical Engineering (ICEE)2016
    • Place of Presentation
      沖縄
    • Year and Date
      2016-07-03
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2016-04-21   Modified: 2019-03-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi