• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

A policy selection method based on the priming effect in the cognitive psychology for reinforcement learning agent

Research Project

Project/Area Number 16K12493
Research Category

Grant-in-Aid for Challenging Exploratory Research

Allocation TypeMulti-year Fund
Research Field Intelligent informatics
Research InstitutionTokyo Denki University

Principal Investigator

SUZUKI Tsuyoshi  東京電機大学, 工学部, 教授 (00349789)

Co-Investigator(Kenkyū-buntansha) 温 文  東京大学, 大学院工学系研究科(工学部), 特別研究員 (50646601)
河野 仁  東京工芸大学, 工学部, 助教 (70758367)
Project Period (FY) 2016-04-01 – 2018-03-31
Project Status Completed (Fiscal Year 2017)
Budget Amount *help
¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
Fiscal Year 2017: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2016: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywords知識選択 / 活性化拡散モデル / 転移学習 / 強化学習 / マルチロボット転移学習 / 認知心理学 / 知的システムアーキテクチャ / 学習知識の選択
Outline of Final Research Achievements

This research proposes a policy transfer method of a reinforcement learning agent for suitable learning in unknown or dynamic environments based on a spreading activation model in the cognitive psychology. The agent saves policies learned in various environments and learns flexibly by partially using suitable policy according to the environment. In the proposed method, an undirected graph is created between policies, and the network is constructed by them. The agent updates the activate value that policy has according to the environment while repeating processes of recall, activation, spreading, attenuation and learns based on the network. Agent uses this network in transfer learning. Experimental simulations comparing the proposed method with several existing methods are conducted to confirm the usefulness of the proposed method. Simulation results show that the agent achieves the task by selecting the optimal one from policies with the proposed method.

Report

(3 results)
  • 2017 Annual Research Report   Final Research Report ( PDF )
  • 2016 Research-status Report
  • Research Products

    (6 results)

All 2018 2017

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (5 results)

  • [Journal Article] Automatic Convergence Estimation by Utilizing Fractal Dimensional Analysis for Reinforcement Learning2017

    • Author(s)
      Kono Hitoshi, Suzuki Tsuyoshi, Kamimura Akiya, Tomita Kohji, Tamura Yusuke, Yamashita Atsushi, Asama Hajime
    • Journal Title

      The Journal of Instrumentation, Automation and Systems

      Volume: 3 Issue: 3 Pages: 58-70

    • DOI

      10.21535/jias.v3i3.934

    • Related Report
      2017 Annual Research Report
    • Peer Reviewed
  • [Presentation] 強化学習における方策転移度合い決定のための転移曲面の検討2018

    • Author(s)
      河野仁, 三浦昇三, 温文, 鈴木剛
    • Organizer
      第24回画像センシングシンポジウム(SSII2018)
    • Related Report
      2017 Annual Research Report
  • [Presentation] 強化学習における方策再利用評価のための転移曲面の検討2017

    • Author(s)
      河野仁, 三浦昇三, 温文, 鈴木剛
    • Organizer
      第18回システムインテグレーション部門講演会(SI2017)
    • Related Report
      2017 Annual Research Report
  • [Presentation] 活性化拡散モデルに基づく強学習エージェントの方策選択手法2017

    • Author(s)
      高桑優作, 河野仁, 温文, 神村明哉, 富田康治, 鈴木剛
    • Organizer
      第18回システムインテグレーション部門講演会(SI2017)
    • Related Report
      2017 Annual Research Report
  • [Presentation] 強化学習の方策再利用時におけるステップ単位の方策忘却手法2017

    • Author(s)
      河野仁, 伊藤祐希, 郡司拓朗, 神村明哉, 富田康治, 鈴木剛
    • Organizer
      日本機械学会ロボティクス・メカトロニクス講演会2017
    • Related Report
      2017 Annual Research Report
  • [Presentation] 活性化拡散モデルに基づく強化学習エージェントの方策選択手法2017

    • Author(s)
      高桑優作, 河野仁, 温文, 神村明哉, 富田康治, 鈴木剛
    • Organizer
      日本機械学会ロボティクス・メカトロニクス講演会2017
    • Related Report
      2017 Annual Research Report

URL: 

Published: 2016-04-21   Modified: 2019-03-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi