• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Damaged Building Recognition of the Earthquakes Using Deep Learning with Field and Aerial Photographs

Research Project

Project/Area Number 16K12834
Research Category

Grant-in-Aid for Challenging Exploratory Research

Allocation TypeMulti-year Fund
Research Field Social systems engineering/Safety system
Research InstitutionTokyo Institute of Technology

Principal Investigator

Matsuoka Masashi  東京工業大学, 環境・社会理工学院, 准教授 (80242311)

Research Collaborator MAKI Norio  京都大学, 防災研究所, 教授
TANAKA Satoshi  常葉大学, 大学院環境防災研究科, 教授
NAKAMURA Ryosuke  産業技術総合研究所, 人工知能研究センター, チーム長
Project Period (FY) 2016-04-01 – 2018-03-31
Project Status Completed (Fiscal Year 2017)
Budget Amount *help
¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
Fiscal Year 2017: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2016: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords地震建物被害 / 被災度判定 / 深層学習 / 航空写真 / 現地写真 / 地震被害 / 建物 / CNN / 2016年熊本地震 / ディープラーニング / 阪神・淡路大震災 / 防災 / 建物被災度 / 機械学習 / 写真
Outline of Final Research Achievements

We conducted Convolutional Neural Network (CNN) for the 1995 Kobe earthquake and the 2016 Kumamoto earthquakes to learn images of damaged buildings, generated classifiers for building damage, estimated the building damage and compared with the field survey data. As a result from the Kobe dataset, it became clear that buildings with severe damage can be identified with accuracy of 86.0% for aerial photographs and 83.0% for field photographs. In addition, from the photograph of the site it became clear that the collapsed building can be identified with an accuracy of 98.5%. Also, for the purpose of supplementing the point that not all damage parts can be judged from aerial photographs, estimated seismic intensity at the location of the building was added to the input of learning of CNN. As a result from the Kumamoto dataset, it was shown that there is a possibility of detailed estimation of building damage degree based on the severely damage probability output from CNN.

Report

(3 results)
  • 2017 Annual Research Report   Final Research Report ( PDF )
  • 2016 Research-status Report
  • Research Products

    (10 results)

All 2017 2016

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (9 results) (of which Int'l Joint Research: 2 results)

  • [Journal Article] 3D MODEL RECONSTRUCTION BY SfM-MVS AND ITS APPLICATION TO DETECTION OF BUILDINGS DAMAGED DUE TO EARTHQUAKES2017

    • Author(s)
      河野 洋行、松岡 昌志、牧 紀男、堀江 啓
    • Journal Title

      Journal of Structural and Construction Engineering (Transactions of AIJ)

      Volume: 82 Issue: 735 Pages: 775-782

    • DOI

      10.3130/aijs.82.775

    • NAID

      130005682794

    • ISSN
      1340-4202, 1881-8153
    • Related Report
      2017 Annual Research Report
    • Peer Reviewed
  • [Presentation] 3D Model Reconstruction Using Aerial Photos and Application to Detection of Buildings Damaged due to Earthquakes2017

    • Author(s)
      Masashi MATSUOKA, Hiroyuki KAWANO, Toshiaki SATOH, Hideo SUZUKI, Isao SATO, Jun MIURA
    • Organizer
      Proc. 16th World Conference on Earthquake Engineering
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Exploring Differences Between Japan Geodetic Datum 2000 and World Geodetic System 1984 through Image Coordinate and Exterior Orientation Parameters2017

    • Author(s)
      Min-Lung CHENG, Toshiaki SATOH, Masashi MATSUOKA
    • Organizer
      Proc. of International Symposium on Remote Sensing 2017
    • Related Report
      2017 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 熊本地震の空中写真を用いた深層学習による建物被害推定の検討2017

    • Author(s)
      釜ヶ谷悠馬,松岡昌志,小岩弘道,望月貫一郎
    • Organizer
      日本地震工学会・大会ー2017梗概集
    • Related Report
      2017 Annual Research Report
  • [Presentation] 2016年熊本地震による建物被害を対象とした深層学習による被災度分類の試み2017

    • Author(s)
      釜ヶ谷悠馬,松岡昌志,小岩弘道,望月貫一郎
    • Organizer
      地域安全学会梗概集
    • Related Report
      2017 Annual Research Report
  • [Presentation] 2016年熊本地震における斜め航空写真を用いた目視判読および深層学習による建物被害判別の検討2017

    • Author(s)
      上岡洋平,田中聡,阿部郁男,釜ヶ谷悠馬,松岡昌志
    • Organizer
      地域安全学会梗概集
    • Related Report
      2017 Annual Research Report
  • [Presentation] 兵庫県南部地震の現地写真を用いた深層学習による建物被災度判別2017

    • Author(s)
      石井友,松岡昌志,牧紀男,堀江啓,田中聡
    • Organizer
      日本建築学会大会学術講演梗概集
    • Related Report
      2017 Annual Research Report
  • [Presentation] 空撮画像の目視判読による熊本地震前震および本震の益城町とその周辺の建物被害2016

    • Author(s)
      釜ヶ谷悠馬,松岡昌志,小岩弘道,望月貫一郎
    • Organizer
      地域安全学会研究発表会(秋季)
    • Place of Presentation
      静岡市
    • Year and Date
      2016-11-04
    • Related Report
      2016 Research-status Report
  • [Presentation] 兵庫県南部地震の現地写真および空撮写真を用いた深層学習による建物被災度判別2016

    • Author(s)
      石井友,松岡昌志,牧紀男,堀江啓,田中聡,中村良介,彦坂修平,今泉友之,藤田藍斗,伊東里保
    • Organizer
      地域安全学会研究発表会(秋季)
    • Place of Presentation
      静岡市
    • Year and Date
      2016-11-04
    • Related Report
      2016 Research-status Report
  • [Presentation] 東日本大震災における被災後の高分解能衛星画像を用いた深層学習による建物流出認識2016

    • Author(s)
      石井友,松岡昌志,中村良介,彦坂修平,今泉友之,藤田藍斗,伊東里保
    • Organizer
      日本リモートセンシング学会第61回学術講演会
    • Place of Presentation
      新潟市
    • Year and Date
      2016-11-01
    • Related Report
      2016 Research-status Report

URL: 

Published: 2016-04-21   Modified: 2019-03-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi