Interfacial adhesion and deadhesion by velcro-like entanglement controls of grafted polymer chains under biological environment
Project/Area Number |
16K12893
|
Research Category |
Grant-in-Aid for Challenging Exploratory Research
|
Allocation Type | Multi-year Fund |
Research Field |
Biomedical engineering/Biomaterial science and engineering
|
Research Institution | Tokyo Medical and Dental University |
Principal Investigator |
YUI Nobuhiko 東京医科歯科大学, 生体材料工学研究所, 教授 (70182665)
|
Co-Investigator(Kenkyū-buntansha) |
堤 祐介 東京医科歯科大学, 生体材料工学研究所, 准教授 (60447498)
有坂 慶紀 東京医科歯科大学, 生体材料工学研究所, 助教 (70590115)
田村 篤志 東京医科歯科大学, 生体材料工学研究所, 准教授 (80631150)
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
Fiscal Year 2018: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2017: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2016: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
|
Keywords | ベルクロ様絡み合い / ポリエチレングリコール / 接着 |
Outline of Final Research Achievements |
In this study, we investigated the effect of grafted densities of polymer chains on the unique entanglement phenomenon between singly grafted and looped poly(ethylene glycol) on titanium surfaces. The densities were adjusted by the concentration of polyethylene glycol in the electrodeposition solution. Dynamic friction characteristics were analyzed using singly grafted and looped surfaces with different densities of grafted polymers, and the entanglement phenomenon was observed for the combination of singly grafted and looped surfaces fabricated with 0.1 wt% polyethylene glycol solution. This result suggests that the entanglement was enhanced by the optimum density of grafted polyethylene glycol.
|
Academic Significance and Societal Importance of the Research Achievements |
高分子鎖のベルクロ様絡み合いは、生体環境下での医療用具どうしの接着・脱着だけでなく、生体内の反応に応じて生体組織との接着・脱着を制御することにもつながる。体内に埋植した医療デバイスの組織への固定、治癒過程における癒着防止など生体内での接着可逆性の獲得は潜在的にニーズが高いため、波及効果は非常に高いと言える。本研究の成果は、これまで不可能であった生体環境下での高分子鎖固定化表面どうしの安定な接着と容易な剥離を可能にする基盤技術であり、生体材料学分野における新たな接着制御法として広範囲の応用展開が期待される。
|
Report
(4 results)
Research Products
(9 results)