Ion migration enhancement and new device creation by elastic waves based on mechano-electro-chemistry
Project/Area Number |
16K13657
|
Research Category |
Grant-in-Aid for Challenging Exploratory Research
|
Allocation Type | Multi-year Fund |
Research Field |
Applied materials
|
Research Institution | Tohoku University |
Principal Investigator |
|
Project Period (FY) |
2016-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2016: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | 歪み効果 / イットリア安定化ジルコニア / 弾性波 / 導電率 / 固体酸化物形燃料電池 / 動的歪み / 酸化物イオン導電体 / ひずみ効果 / 定在波 / YSZ / メカノエレクトロケミストリー / 共振 / 固体電解質 / イオン輸送 |
Outline of Final Research Achievements |
Strain effect, which is the phenomena that introduced strain influences ionic conductivity, in oxygen ionic conductors used for high temperature electrochemical devices such as solid oxide fuel cells was studied. We focused on the similarity of the density fluctuation by elastic waves (dynamic strain) to strain caused by applying forces (static strain), and evaluate the influence of dynamic strain produced by elastic waves to oxygen ionic conductivity of yttria stabilized zirconia (YSZ) using a house build apparatus. Based on the experimental results, and the analysis using mathematical models, we revealed the effect of dynamic strain to oxygen ionic conductivity for the first time in the world. Oxygen ionic conductivity changes according to dynamic strain, and the rate of change is similar to strain effect for static strain. Using the results, we proposed new performance improve method for high temperature electrochemical devices using elastic waves.
|
Academic Significance and Societal Importance of the Research Achievements |
歪みがイオン導電体のイオン導電率に与える影響は古くから知られています。しかし異方性,引張方向の歪みを加え制御することの困難さから,歪みの導電率に対する正の影響(歪み効果)は近年まで報告されませんでした。また,歪み印可手法は現在でも学術的に大きな課題となっています。弾性波による歪みの印可は,異方性の歪みを高い制御性でイオン導電体に加えることが可能であり,歪み効果の研究を一気に加速する可能性を持つと考えています。電気化学デバイスの内部には,製造時,運転時様々な歪みが導入されています。本研究により,現在は考慮されていない歪みの性能への影響を考慮可能となり,性能設計等においても進展を期待できます。
|
Report
(5 results)
Research Products
(17 results)