Project/Area Number |
16K13722
|
Research Category |
Grant-in-Aid for Challenging Exploratory Research
|
Allocation Type | Multi-year Fund |
Research Field |
Quantum beam science
|
Research Institution | Gunma University |
Principal Investigator |
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2018: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2017: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2016: ¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
|
Keywords | ウルトラファインバブル / タンパク質 / 脂質 / リポソーム / 糖 / X線散乱 / 中性子散乱 / 脂質膜 / x線散乱 / 水和 / 溶液散乱 / 放射光X線 / 量子ビーム |
Outline of Final Research Achievements |
Ultra-fine bubbles (UFBs) are defined as small gas-filled bubbles with a diameter smaller than 1 μm. UFBs are stable for several weeks in aqueous solutions due to their small size. Although industrial applications of UFBs have recently arisen in various fields such as agricultural and fishery industries, and medical therapy. However, the mechanism underlying the behavior of UFBs is still ambiguous and there is little direct evidence of the effect of UFBs on biological materials. By using small-and-wide angle X-ray scattering, we have investigated the structures of UFBs and their effect on protein and lipid membrane structures. We found that UFBs present a dynamic diffusive boundary (interface) due to the continuous release and absorption of gas. UFBs were found to not affect the structures of proteins at all hierarchal-structure levels, while they did influence the packing and fluctuation of the hydrocarbon chains in the liposomes but not their shapes.
|
Academic Significance and Societal Importance of the Research Achievements |
100nm以下の微細微小気泡であるウルトラファインバブルは,長期間安定であるためその応用分野は,電子産業分野,洗浄分野,医療・薬品分野,農業・水産分野など極めて広範囲に及んでいる。しかし,産業利用が先行する一方,その物理化学的な性質や生成・消滅機構,存在状態の構造動態などに関する実験的研究や理論的解明は遅れており,本格的な産業応用には基礎物性研究や生体物質を含む各種物質との相互作用等に関する研究の進展が鍵を握っている。本研究の推進によって,ナノレベルでの構造解析により,ウルトラファインバブルの構造安定性に関する新たな動的構造モデルを提示し,生体物質に対するその効果のメカニズムを明らかにした。
|