• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Research on number theory in vew of finite symmetric spaces and the associated graph spectrum

Research Project

Project/Area Number 16K13750
Research Category

Grant-in-Aid for Challenging Exploratory Research

Allocation TypeMulti-year Fund
Research Field Algebra
Research InstitutionEhime University

Principal Investigator

HIRANO Miki  愛媛大学, 理工学研究科(理学系), 教授 (80314946)

Co-Investigator(Kenkyū-buntansha) 山崎 義徳  愛媛大学, 理工学研究科(理学系), 准教授 (00533035)
原本 博史  愛媛大学, 教育学部, 准教授 (40511324)
Project Period (FY) 2016-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
Fiscal Year 2018: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2016: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywords代数学 / 整数論 / グラフスペクトル論 / 有限対称空間 / 有限特殊関数
Outline of Final Research Achievements

We have developed a study of spectral distribution problems of Cayley graphs in view of Number Theory. In particular, we give a result on boundary problem of Ramanujancy for some families of Cayley graphs on non-commutative finite groups, which is similar to the case of a family of circulant graphs. Our results suggest an interesting (unknown) relation between theory of graph spectrum and analytic number theory.

Academic Significance and Societal Importance of the Research Achievements

解析的整数論の問題はその研究の歴史にも関わらず、解決の糸口が見えていないものが散見される。本研究の成果は、古典的な解析的整数論における有名未解決問題であるハーディ・リトルウッド予想とグラフスペクトル論との関連性についての新しい指摘を与えるものであり、新しい研究方針を与えるものと考えられる。また、成果として発表するには至らなかったが、有限群上の調和解析や関連する組合せ論と整数論との重要な関連についての新たな知見は今後の研究に活用されるものである。

Report

(4 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (3 results)

All 2018 2017 2016

All Journal Article (1 results) (of which Peer Reviewed: 1 results,  Acknowledgement Compliant: 1 results) Presentation (2 results)

  • [Journal Article] Ramanujan Cayley graphs of Frobenius groups2016

    • Author(s)
      Miki Hirano, Kohei Katata and Yoshinori Yamasaki
    • Journal Title

      Bulletin of the Australian Mathematical Society

      Volume: 94 Issue: 3 Pages: 373-383

    • DOI

      10.1017/s0004972716000587

    • Related Report
      2016 Research-status Report
    • Peer Reviewed / Acknowledgement Compliant
  • [Presentation] Remarks on Ramanujan circulants and dihedrants2018

    • Author(s)
      平野 幹
    • Organizer
      香川セミナー
    • Related Report
      2018 Annual Research Report
  • [Presentation] Ramanujan Cayley graphs and the conjecture of Hardy-Littlewood and Bateman-Horn2017

    • Author(s)
      平野 幹
    • Organizer
      概均質セミナー
    • Related Report
      2017 Research-status Report

URL: 

Published: 2016-04-21   Modified: 2020-03-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi