• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Harmonic analysis and probablisticc approaches to stochastic nonlinear dispersive equations

Research Project

Project/Area Number 16K13770
Research Category

Grant-in-Aid for Challenging Exploratory Research

Allocation TypeMulti-year Fund
Research Field Mathematical analysis
Research InstitutionKyoto University

Principal Investigator

Tsutsumi Yoshio  京都大学, 理学研究科, 教授 (10180027)

Research Collaborator INAHAMA Yuzuru  
Project Period (FY) 2016-04-01 – 2019-03-31
Project Status Completed (Fiscal Year 2018)
Budget Amount *help
¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
Fiscal Year 2018: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2017: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2016: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywords非線形分散型方程式 / 無限次元ガウス測度 / 準不変性 / フーリエ制限ノルム法 / 準不変測度 / 非線形シュレディンガー方程式の高階拡張 / 准不変測度 / ガウス測度 / 平滑化効果 / 共鳴周波数 / 確率非線形分散型方程式 / 3次分散項を持つ非線形シュレディンガー方程式 / 初期値問題の適切性 / フーリエ制限法 / ラフパス理論 / グローバル・アトラクター / 確率非線形波動・分散型方程式 / 制御されたラフパス / 函数方程式論 / 函数解析学
Outline of Final Research Achievements

In collabolation with Tadahiro Oh (University of Edinburgh) and Nikolay Tzvetkov (University of Cergy-Pontoirse), I studed the transport property of Gaussian measures under the flow of the nonlinear Schrodinger equation with third order dispersion, which models the propagation of signal in a crystal fiber. Specifically, we proved that Gaussian measures are quasi-invariant under the flow of the third order dispersion nonlinear Schrodinger equation. The quasi-invariance means that the Gaussian measure and the transported measure under the flow of evolution equation from it are absolutely continuous.

Academic Significance and Societal Importance of the Research Achievements

無限次元ハミルトン系において最も重要な不変測度はGibbs測度であろう.しかし,Gibbs測度の台空間は非線形発展方程式を解くには弱い(即ち,広い)関数空間であることが多い.また,滑らかな解(例えば,エネルギー有限となる解)全体の集合は,Gibbs測度に関しては測度ゼロとなることが知られている.そこで,測度の不変性の代わりに準不変性を考えることにより,より広いクラスの解の振る舞いを捉えようとするのは自然である.その方向における研究の一つが,ガウス測度が非線形発展方程式の下で準不変となっているかどうかという問いかけである.本研究課題によって得られた成果は先駆的であると言える.

Report

(4 results)
  • 2018 Annual Research Report   Final Research Report ( PDF )
  • 2017 Research-status Report
  • 2016 Research-status Report
  • Research Products

    (12 results)

All 2019 2018 2017 2016 Other

All Int'l Joint Research (4 results) Journal Article (3 results) (of which Peer Reviewed: 3 results) Presentation (5 results) (of which Int'l Joint Research: 4 results,  Invited: 5 results)

  • [Int'l Joint Research] エジンバラ大学(英国)

    • Related Report
      2018 Annual Research Report
  • [Int'l Joint Research] セルジ-ポントワーズ大学(フランス)

    • Related Report
      2018 Annual Research Report
  • [Int'l Joint Research] University of Cergy-Pontoise(フランス)

    • Related Report
      2017 Research-status Report
  • [Int'l Joint Research] University of Edinburgh(英国)

    • Related Report
      2017 Research-status Report
  • [Journal Article] Ill-posedness of the third order NLS equation with Raman scattering term2018

    • Author(s)
      N. Kishimoto and Y. Tsutsumi
    • Journal Title

      Math. Res. Lett.

      Volume: 25 Issue: 5 Pages: 1447-1484

    • DOI

      10.4310/mrl.2018.v25.n5.a5

    • Related Report
      2018 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Local well-posedness of the NLS with third order dispersion in negative Sobolev spaces2018

    • Author(s)
      T. Miyaji and Y. Tsutsumi
    • Journal Title

      Differential and Integral Equations

      Volume: 31 Pages: 111-132

    • Related Report
      2017 Research-status Report
    • Peer Reviewed
  • [Journal Article] Existence of global solutions and global attractor for the third order Lugiato-Lefever equation on $\mathbb{T}$2016

    • Author(s)
      T. Miyaji and Y. Tsutsumi
    • Journal Title

      Ann. Inst. Henri Poincare, Analyse Non Lineaire

      Volume: オンライン出版 Issue: 7 Pages: 1707-1725

    • DOI

      10.1016/j.anihpc.2016.12.004

    • Related Report
      2016 Research-status Report
    • Peer Reviewed
  • [Presentation] Quasi-invariant Gaussian measures for NLS with third order dispersion2019

    • Author(s)
      Y. Tsutsumi
    • Organizer
      国立成功大学数学系コロキウム(台湾)
    • Related Report
      2018 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Localization estimate of solution for the 2D damped and forced Zakharov-Kuznetsov equations2018

    • Author(s)
      Yoshio Tsutsumi
    • Organizer
      The JAMI 2018 Second Workshop at Johons Hopkins University
    • Related Report
      2017 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Nonlinear Dispersive Equations and Smoothing Effect2017

    • Author(s)
      堤 誉志雄
    • Organizer
      2017年度日本数学会秋季総合分科会(総合講演)
    • Related Report
      2017 Research-status Report
    • Invited
  • [Presentation] Global attractor for the 3rd order Lugiato-Lefever equation on 1D torus2016

    • Author(s)
      Y. Tsutsumi
    • Organizer
      Nonlinear Parital Differential Equations and Mathematical Physics Workshop
    • Place of Presentation
      清華三亜国際数学議場(中国三亜)
    • Year and Date
      2016-12-05
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Existence of global solutions and global attractor for the third order Lugiato-Lefever equation on $\mathbf{T}$2016

    • Author(s)
      Y. Tsutsumi
    • Organizer
      Mathematical Analysis for Stability in Nonlinear Dynamics
    • Place of Presentation
      北海道大学(札幌)
    • Year and Date
      2016-08-24
    • Related Report
      2016 Research-status Report
    • Int'l Joint Research / Invited

URL: 

Published: 2016-04-21   Modified: 2022-02-22  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi