Theoretical studies on chiral transport in crystals
Project/Area Number |
16K13834
|
Research Category |
Grant-in-Aid for Challenging Exploratory Research
|
Allocation Type | Multi-year Fund |
Research Field |
Condensed matter physics II
|
Research Institution | Tokyo Institute of Technology |
Principal Investigator |
|
Project Period (FY) |
2016-04-01 – 2020-03-31
|
Project Status |
Completed (Fiscal Year 2019)
|
Budget Amount *help |
¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
Fiscal Year 2018: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2017: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2016: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
|
Keywords | 物性理論 / スピンエレクトロニクス / スピントロニクス |
Outline of Final Research Achievements |
In our previous work we predicted that in chiral crystals, a current induces an orbital magnetization in either parallel or antiparallel directions, and we call this phenomenon chiral transport. In this project, we introduced a parameter representing how chiral the transport in the crystal is, and we showed that it can be enhanced by one or two orders of magnitude compared with classical solenoids. In addition, we constructed a theory of this current-induced orbital magnetization in a broader class of metals, such as polar metals, two-dimensional thin films without inversion symmetry, and surfaces/interfaces of insulators, and we physically interpret this phenomenon in terms of formation of current loops. As a byproduct, we constructed a method to calculate in-plane orbital magnetization in two-dimensional systems.
|
Academic Significance and Societal Importance of the Research Achievements |
電流誘起軌道磁化(カイラル伝導)は、従来のスピン軌道相互作用を利用した磁化制御と異なり、結晶構造自身により決まる現象であり、多種多様な結晶構造を利用することで、従来のスピントロニクスとは異なる形で磁化を制御できる可能性を拓く。本研究によりこの効果が現れる物質系を、らせん構造の結晶のみならず、表面・界面、2次元原子層膜などさまざまな方向へ広げることができ、理論・実験面で今後の広がりが期待できる。
|
Report
(5 results)
Research Products
(34 results)