Enhancement of signal intensity of inverse photoelectron spectroscopy by surface plasmon resonance
Project/Area Number |
16K13924
|
Research Category |
Grant-in-Aid for Challenging Exploratory Research
|
Allocation Type | Multi-year Fund |
Research Field |
Physical chemistry
|
Research Institution | Chiba University |
Principal Investigator |
|
Research Collaborator |
USUI Ryota
SHIBATA Koki
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2018: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2017: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2016: ¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
|
Keywords | 表面プラズモン共鳴 / 逆光電子分光 / ナノ粒子 / 有機半導体 / 低エネルギー逆光電子分光 / 深紫外光 / 逆光電子分光法 / プラズモニクス / アルミニウム |
Outline of Final Research Achievements |
Information concerning the unoccupied states of condensed matter is of great relevance to their electronic, optical and chemical properties. These unoccupied states can be directly examined by inverse photoelectron spectroscopy (IPES). The fundamental drawback of IPES is its low signal intensity. In this study, we demonstrate for the first time the enhancement of the signal intensity of IPES by the surface plasmon resonance (SPR). This was enabled by the wavelength matching between the SPR of Ag or Al with the low-energy inverse photoelectron spectroscopy which was developed by our group. A 5-fold enhancement of the LEIPS signal was observed from a prototypical organic semiconductor, copper phthalocyanine, by SPR of Ag nanoparticles. Further, we are trying to enhance the signal intensity at deep ultraviolet range using an aluminum-coated grating.
|
Academic Significance and Societal Importance of the Research Achievements |
逆光電子分光は原理的に物質の空準位(伝導帯)を調べる優れた方法であるが、信号強度が極めて弱いという根本的な課題があった。本研究では、表面プラズモン共鳴を用いることで、逆光電子分光の信号強度の増強に初めて成功した。 信号強度の増強が可能になると、逆光電子分光法の応用範囲が飛躍的に高まる。たとえば、測定時間が短縮されることで、電子線照射に対して不安定な生体関連物質や有機材料の測定が可能になる。また、時間分解測定により、化学反応や劣化過程の追跡が可能になる。一方で、より少ない測定試料での測定が可能になることから、空間分解能が現在の数ミリメートルから数10マイクロメートルに改良できるであろう。
|
Report
(4 results)
Research Products
(12 results)