Project/Area Number |
16K13977
|
Research Category |
Grant-in-Aid for Challenging Exploratory Research
|
Allocation Type | Multi-year Fund |
Research Field |
Functional solid state chemistry
|
Research Institution | Nagoya University |
Principal Investigator |
Awaga Kunio 名古屋大学, 理学研究科, 教授 (10202772)
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2017: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2016: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
|
Keywords | K4構造 / 分子結晶 / スピンリキッド / ハニカム格子 / 有機ラジカル / 結晶構造 / ディラックコーン / フラットバンド / 強等方性結晶 / スピンフラストレーション / 分子磁性 / 分子性固体 / 有機導体 / 結晶成長 |
Outline of Final Research Achievements |
Recently, graph theory proposed the strong isotropic property, which was realized only on the following three lattices, diamond, K4 and honeycomb. In the present project, we tried to synthesize molecule-based K4 and honeycomb lattices with polyhedral pi-conjugated molecules. It was found that [TBA]3[(-)-NDI-Δ]2 crystallized into a K4 lattice, in which unpaired electrons formed a hyperkagome lattice. Low-temperature physical measurements revealed a spin-liquid ground state in it. We also found a molecule-based honeycomb lattice in Rb3[p-TT] with an exotic band structure, which was similar to that of graphene.
|
Academic Significance and Societal Importance of the Research Achievements |
「強等方性」をもつK4格子、ダイヤモンド格子、ハニカム格子だが、その高い対称性によってDirac coneなどの特異なバンド構造をもつことが予言・実証されている。しかし、これらから超伝導などの機能物性を引き出すためにはバンドフィリング制御が不可欠だが、たとえばダイヤモンドなどの元素物質では、その制御量にはおのずと限界がある。本研究では、このような特異な構造を分子で作り上げる一つの方法論を確立することができた。今後、より自由なバンドフィリング制御に道を開く成果である。
|