Development of measurement system of energy dissipation under random loading and its application to fatigue damage evaluation
Project/Area Number |
16K14119
|
Research Category |
Grant-in-Aid for Challenging Exploratory Research
|
Allocation Type | Multi-year Fund |
Research Field |
Materials/Mechanics of materials
|
Research Institution | Kobe University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
塩澤 大輝 神戸大学, 工学研究科, 准教授 (60379336)
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
Fiscal Year 2017: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2016: ¥2,470,000 (Direct Cost: ¥1,900,000、Indirect Cost: ¥570,000)
|
Keywords | 熱弾性応力計測 / 散逸エネルギ計測 / 非破壊評価 / 可視・赤外同期 / 位置補正 / 破壊力学評価 / 機械材料・材料力学 / 散逸エネルギ / 可視・赤外同期計測 / 可視・赤外同時計測 / 破壊 / 赤外線カメラ / 疲労損傷 |
Outline of Final Research Achievements |
In this research project, a highly accurate thermoelastic stress measurement and dissipation energy measurement system was developed based on the same field of view and simultaneous measurement of visible optical images and infrared images. The visible images and the infrared images were spatially and temporally synchronized. Accurately determined deformation information of the object by visible measurement was applied to time-series infrared measurement data to perform highly accurate motion compensation processing, and the accuracy of thermoelastic stress measurement and dissipative energy measurement was improved. As a result, it enables us to improve the measurement accuracy of stress and dissipated energy in the microscopic measurement field, and also to evaluate the effective stress intensity factor range by thermoelastic stress measurement. We also verified the feasibility of measuring the energy dissipation under random loading.
|
Academic Significance and Societal Importance of the Research Achievements |
構造物の経年劣化が大きな問題となっている.設計寿命を超えた構造物の延命化のためには,的確な構造健全性保障による維持管理手法の構築が急務である.橋梁やクレーンなどの鋼構造物の構造健全性保証においては,疲労き裂の非破壊評価が重要である.これまでの非破壊評価法は,疲労き裂の検出や進展評価に重点を置いていたが,構造健全性をライフサイクルで保障するためには,疲労き裂発生(あるいは補修後の再発生)予測が必要である.本研究は,き裂発生評価に有効な応力分布および散逸エネルギ分布計測を高精度化し,実構造物に対して評価の可能性を広げたことに学術的・社会的意義を有するものである.
|
Report
(4 results)
Research Products
(33 results)