Project/Area Number |
16K14238
|
Research Category |
Grant-in-Aid for Challenging Exploratory Research
|
Allocation Type | Multi-year Fund |
Research Field |
Electronic materials/Electric materials
|
Research Institution | Japan Aerospace EXploration Agency |
Principal Investigator |
Inatomi Yuko 国立研究開発法人宇宙航空研究開発機構, 宇宙科学研究所, 教授 (50249934)
|
Co-Investigator(Kenkyū-buntansha) |
VELU NIRMALKUMAR 国立研究開発法人宇宙航空研究開発機構, 宇宙科学研究所, 宇宙航空プロジェクト研究員 (60804482)
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
Fiscal Year 2017: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Fiscal Year 2016: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | 3Dプリンティング / 精密部品加工 / 半導体 / 微細多結晶 / 精密部品加 |
Outline of Final Research Achievements |
Trial production of a melt injection part and condition searches for formation and injection of micro droplets were conducted for a development of 3D printing of semiconductor fine polycrystals. After preliminary examinations using Galinstan and bismuth, it succeeded in shaping with bismuth antimony alloy. Measurements of thermoelectric properties, composition, and grain size distribution of the shaped object was carried out, but superior properties were not obtained as compared with the bulk crystals grown by a unidirectional solidification in a strong magnetic field.It was considered that a time-dependent change of antimony concentration in the melt, a difference of solidification speed due to variation of injection quantity of the droplet, injection speed and temperature of the droplet caused the undesirable results. It has been recognized again that stable generation of high-temperature droplets with micron-order size is a major technical issue in the future.
|
Academic Significance and Societal Importance of the Research Achievements |
インクジェットプリンタと同様の原理に基づき、半導体材料の微小融液を射出して被造形物上に凝固堆積させる「融液ジェット3D プリンティング法」の基本的動作の確認に成功した。本手法では、金属粉末床を作る必要がなく、被造形物の形状の高度化、帯電量による射出粒径の制御・冷却速度、およびマルチノズルによる異なる組成の原料供給により材料の組織微細化・多層化・傾斜機能化を可能とするなど、柔軟な材料設計が期待される。
|