Research on organic semiconductor laser using AlGaN/GaN nano-optical resonator
Project/Area Number |
16K14260
|
Research Category |
Grant-in-Aid for Challenging Exploratory Research
|
Allocation Type | Multi-year Fund |
Research Field |
Electron device/Electronic equipment
|
Research Institution | Sophia University |
Principal Investigator |
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2016: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
|
Keywords | 光デバイス / 有機半導体レーザ / 有機半導体 / 窒化物半導体 / 光共振器 / 有機単結晶 / ナノ構造 / 酸化物半導体 / GaN / 半導体レーザ |
Outline of Final Research Achievements |
In this project, we aimed at developing basic technology for hybrid organic semiconductor lasers with nitride semiconductor nano-optical resonators and organic semiconductor active layers. With regard to the organic semiconductor active layer, we have achieved pioneering results such as development of plate-like organic single crystal growth method and molecular doping method those using electrospray deposition, evaluation of molecular alignment of dopants, observation of stimulated emission from dopant molecules. We also found out that adding ammonia during HEATE which is nitride semiconductor nanofabrication technology using hydrogen assisted thermal decomposition, enables vertical etching. It was demonstrated that various kinds of high aspect ultrafine nano optical resonators. These achievements are expected to contribute to the realization of a nitride semiconductor nanocavity organic semiconductor lasers.
|
Academic Significance and Societal Importance of the Research Achievements |
低コスト高効率な可視域レーザ光源として期待される電流注入型有機半導体レーザの基盤技術開発を行った。静電塗布法を用いる有機単結晶成長法や分子ドーピング技術の開発は世界的にも先駆的な成果であり、分子ドープ有機単結晶における学術的知見や応用上の有機半導体の機能性向上に資する成果である。また、新規に開発したアンモニア添加HEATE法による窒化物半導体の低損傷高アスペクトナノ構造を作製技術は、多様な形状のナノ光共振器構造の作製に適用可能であり、ハイブリッド有機半導体レーザのみならず窒化物半導体極微細ナノ構造の学術的解明や産業応用への利用が期待される。
|
Report
(4 results)
Research Products
(70 results)