Project/Area Number |
16K14405
|
Research Category |
Grant-in-Aid for Challenging Exploratory Research
|
Allocation Type | Multi-year Fund |
Research Field |
Composite materials/Surface and interface engineering
|
Research Institution | Kyoto University |
Principal Investigator |
Eriguchi Koji 京都大学, 工学研究科, 教授 (70419448)
|
Co-Investigator(Kenkyū-buntansha) |
巽 和也 京都大学, 工学研究科, 准教授 (90372854)
|
Research Collaborator |
WEI ZHIQIANG
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
Fiscal Year 2018: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2017: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2016: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | プラズマ処理 / 表面処理 / ナノ構造 / 確率過程 / 欠陥 |
Outline of Final Research Achievements |
Detailed analysis based on the stochastic theory is essential for controlling the creation of defects in highly reliable devices. In this study, we focus on the defect creation process in Si substrates due to plasma exposure and the detailed behavior of oxygen vacancies in metal oxides under the electrical stress. The defect creation in Si substrates was found to obey the following two-step process, i.e., the progressive and saturation phases. In addition to a statistical formulation for the saturation phase, the stochastic effect was confirmed to be a key to the description of the defect creation in the progressive phase. An analytical formula based on stochastic differential equation was found to describe the cycle-to-cycle current trajectories under the electrical stress. The implementation of the stochastic theory discussed here is extremely important in designing of future highly reliable devices.
|
Academic Significance and Societal Importance of the Research Achievements |
高信頼性機能材料中の原子レベルの欠陥形成過程は、これまで統計的ゆらぎ・バラツキに基づいたモデルで表現されていたが、本研究では、確率過程解析を実装した新しいモデル構築を目指した。種々の材料中の極微少量の局所欠陥構造の振る舞いを確率過程として捉え、確率解析により記述した。応用数学を有効活用した機能材料中の欠陥制御は新しい学術として幅広い工学分野への応用が期待される。
|