Project/Area Number |
16K14417
|
Research Category |
Grant-in-Aid for Challenging Exploratory Research
|
Allocation Type | Multi-year Fund |
Research Field |
Structural/Functional materials
|
Research Institution | Osaka University |
Principal Investigator |
Sano Tomokazu 大阪大学, 工学研究科, 准教授 (30314371)
|
Research Collaborator |
Arakawa Kazuto
Inubushi Yuichi
|
Project Period (FY) |
2016-04-01 – 2019-03-31
|
Project Status |
Completed (Fiscal Year 2018)
|
Budget Amount *help |
¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2017: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2016: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
|
Keywords | 転位挙動 / 超高速変形 / フェムト秒レーザ / ピーニング / X線自由電子レーザー / フェムト秒レーザー駆動衝撃波 / 超高ひずみ速度変形 / 転位密度 / 転位核生成 / 超音速転位 |
Outline of Final Research Achievements |
We constructed an in-situ measurement system for femtosecond laser-driven shock compression phenomena at the X-ray free electron laser facility SACLA built at Harima Office, RIKEN. We measured in-situ lattice strain at an early stage of femtosecond laser-induced shock wave compression of pure iron which is a BCC structure, bulk nano iron whose crystal grain size is reduced to nanometer order by severe plastic deformation, and pure nickel which is FCC structure. As a result, it was shown that the mechanism of plasticity generation is different from that of the conventional method under ultrafast strain-rate deformation.
|
Academic Significance and Societal Importance of the Research Achievements |
これまでに無かった新しい塑性変形機構を提唱出来、この機構を利用することによって、これまで従来法では強化することが難しかった材料の強化が可能になった。例えば、CO2削減のため自動車の軽量化が進められており、このことを実現するために軽量で高強度である高張力鋼板が用いられている。ところが、この高張力鋼板を後処理でさらに強度を上げることは極めて難しい。その理由は、既に臨界密度に近い転位を内在しているためである。本研究によって、転位を効率的に追加することが出来るようになり、マクロ的にはさらなる高強度化が見込まれた。
|